部分充液多胞元结构的面内动态力学特性研究

赵著杰 侯海量 李典 王克 姚梦雷

赵著杰, 侯海量, 李典, 王克, 姚梦雷. 部分充液多胞元结构的面内动态力学特性研究[J]. 爆炸与冲击, 2022, 42(3): 033103. doi: 10.11883/bzycj-2021-0173
引用本文: 赵著杰, 侯海量, 李典, 王克, 姚梦雷. 部分充液多胞元结构的面内动态力学特性研究[J]. 爆炸与冲击, 2022, 42(3): 033103. doi: 10.11883/bzycj-2021-0173
ZHAO Zhujie, HOU Hailiang, LI Dian, WANG Ke, YAO Menglei. In-plane dynamic mechanical properties of partially liquid filled multicell structure[J]. Explosion And Shock Waves, 2022, 42(3): 033103. doi: 10.11883/bzycj-2021-0173
Citation: ZHAO Zhujie, HOU Hailiang, LI Dian, WANG Ke, YAO Menglei. In-plane dynamic mechanical properties of partially liquid filled multicell structure[J]. Explosion And Shock Waves, 2022, 42(3): 033103. doi: 10.11883/bzycj-2021-0173

部分充液多胞元结构的面内动态力学特性研究

doi: 10.11883/bzycj-2021-0173
基金项目: 国家自然科学基金(51979277)
详细信息
    作者简介:

    赵著杰(1997- ),男,硕士研究生,zhaozhujie@163.com

    通讯作者:

    李 典(1990- ),男,博士,讲师,lidian916@163.com

  • 中图分类号: O347.3

In-plane dynamic mechanical properties of partially liquid filled multicell structure

  • 摘要: 为探究部分充液多胞元结构的抗冲击防护性能,结合充液内凹胞元的落锤冲击试验,建立了充液内凹胞元、部分充液内凹多胞元结构的冲击动态特性二维FEM数值分析,计算得到了部分充液内凹多胞元结构的变形破坏模式,讨论了不同冲击速度下部分充液内凹多胞元结构的动力学响应特性。结果表明:在充液胞元破损后,水介质会流入相邻未充液胞元,形成二次鼓胀吸能效应,从而有效提高结构壁面的变形吸能水平;结构中的充液区域和未充液区域的变形破坏模式分别为鼓胀拉伸和屈曲弯折;随着冲击速度的提高,结构的单位体积应变能以及对初始冲击载荷的削弱作用均得到增强。横向充液方式可以等效为变刚度弹簧的串联布置,该方式仅影响结构的局部刚度,纵向充液方式可以等效为多层变刚度弹簧的并联布置,该方式会影响结构的整体刚度;充液区域与未充液区域的等效刚度呈动态变化,结构变形模式由各区域实时的等效刚度决定。当载荷冲击速度较高时,横向和纵向部分充液内凹多胞元结构对初始冲击载荷的削弱能力均优于未充液内凹多胞元结构。
  • 图  1  二维有限元模型建立方法

    Figure  1.  Two-dimensional FEM model building method

    图  2  部分充液内凹多胞元结构的二维有限元模型

    Figure  2.  Two-dimensional FEM model of partially liquid filled concave multicell structure

    图  3  内凹多胞元结构二维有限元模型的有效性验证

    Figure  3.  Validity verification of two-dimensional FEM model of concave multicell structure

    图  4  未充液多胞元结构的典型变形破坏模式

    Figure  4.  Typical deformation/failure modes of unfilled multicell structures

    图  5  横向充液多胞元结构的典型变形破坏模式

    Figure  5.  Typical deformation/failure modes of transversely liquid filled multicell structures

    图  6  横向充液多胞元结构的典型应力-应变曲线

    Figure  6.  Stress-strain curve of transversely liquid filled multicell structures

    图  7  纵向充液多胞元结构的典型变形破坏模式

    Figure  7.  Typical deformation/failure modes of longitudinally liquid filled multicell structures

    图  8  纵向充液多胞元结构的典型应力-应变曲线

    Figure  8.  Stress-strain curves of longitudinally liquid filled multicell structures

    图  9  横向充液多胞元结构接触力时程曲线(充液方式A)

    Figure  9.  Contact force time course curve of transversely liquid filled multicell structure (method A)

    图  10  横向充液多胞元结构接触力时程曲线(充液方式C)

    Figure  10.  Contact force time course curve of transversely liquid filled multicell structure (method C)

    图  11  横向充液多胞元结构接触力时程曲线(充液方式B)

    Figure  11.  Contact force time course curves of transversely liquid filled multicell structure (method B)

    图  12  纵向充液多胞元结构接触力时程曲线(充液方式E)

    Figure  12.  Contact force time course curve of longitudinally liquid filled multicell structure (method E)

    图  13  不同输出频率下纵向充液多胞元结构载荷削弱曲线(充液方式F)

    Figure  13.  Load dissipation curves of liquid filled multicell structures at different output frequency (method F)

    图  14  不同冲击速度下多胞元结构的初始载荷削弱因子(d

    Figure  14.  Initial load weakening factors (d) of multicell structures at different impact velocities

    图  15  不同冲击速度下多胞元结构的初期平台应力

    Figure  15.  Initial platform stress of liquid filled multicell structures at different impact velocities

    图  16  不同冲击速度下充液多胞元结构的单位体积应变能(e)时程曲线

    Figure  16.  History of strain energy per unit volume (e) for liquid filled multicell structures at different impact velocities

    图  17  充液多胞元结构的典型吸能模式

    Figure  17.  Typical energy absorption modes of liquid filled multicellular element structures

    表  1  水介质模型参数

    Table  1.   Required parameters for water model

    c/(m·s−1S1S2S3γ0AEW/(kJ·m−3V0
    1 4841.979000.11301
    下载: 导出CSV

    表  2  空气模型参数

    Table  2.   Required parameters for air model

    C0C1C2C3C4C5C6Ea/(kJ·m−3
    00000.40.40253
    下载: 导出CSV

    表  3  结构模型参数

    Table  3.   Required parameters for structure model

    Rs/(kg·m−3Es/GPaνsσy/MPaηβC7/s−1PcFsus
    7 8002100.32350.2500.040 550.280
    注:RsEsνsσ0η分别为结构的质量密度、杨氏模量、泊松比、屈服应力、切线模量;β为硬化参数,C7Pc为Cowper-Symonds应变率模型的应变率参数,Fs为侵蚀元素的有效塑性应变,us为速率影响参数。
    下载: 导出CSV

    表  4  充液内凹胞元的侧壁剩余间距及结构剩余高度

    Table  4.   Rremaining sidewall spacing and remaining structure height of liquid filled concave cell structure

    研究方法侧壁剩余间距/mm侧壁剩余间距相对误差%结构剩余高度/mm结构剩余高度相对误差
    落锤试验(3D扫描)132.5245.7
    三维FEM模型142.27.32247.50.73%
    二维FEM模型140.66.11244.80.37%
    下载: 导出CSV

    表  5  未充液内凹胞元的侧壁剩余间距及结构剩余高度

    Table  5.   Remaining sidewall spacing and remaining structure height of unfilled concave cell structure

    研究方法侧壁剩余间距/mm侧壁剩余间距相对误差%结构剩余高度/mm结构剩余高度相对误差
    落锤试验(3D扫描)108.9227.2
    三维FEM模型106.52.20228.50.57%
    二维FEM模型103.25.23220.62.90%
    下载: 导出CSV

    表  6  数值分析计算工况

    Table  6.   Working conditions of numerical simulation

    工况充液方法充液位置载荷冲击速度/(m·s−1载荷作用时程/ms工况充液方法充液位置载荷冲击速度/(m·s−1载荷作用时程/ms
    1未充液59615未充液2024
    2方式A1和259616方式A1和22024
    3方式B3和459617方式B3和42024
    4方式C5和659618方式C5和62024
    5方式DA和L59619方式DA和L2024
    6方式EC和J59620方式EC和J2024
    7方式FE和G59621方式FE和G2024
    8未充液104822未充液3016
    9方式A1和2104823方式A1和23016
    10方式B3和4104824方式B3和43016
    11方式C5和6104825方式C5和63016
    12方式DA和L104826方式DA和L3016
    13方式EC和J104827方式EC和J3016
    14方式FE和G104828方式FE和G3016
    下载: 导出CSV
  • [1] PAN J, FANG H, XU M C, et al. Dynamic performance of a sandwich structure with honeycomb composite core for bridge pier protection from vehicle impact [J]. Thin-Walled Structures, 2020, 157: 107010. DOI: 10.1016/j.tws.2020.107010.
    [2] ZHOU H Y, ZHANG X J, WANG X J, et al. Response of foam concrete-filled aluminum honeycombs subject to quasi-static and dynamic compression [J]. Composite Structures, 2020, 239: 112025. DOI: 10.1016/j.compstruct.2020.112025.
    [3] YIN F, CAO W L, XUE S D, et al. Behavior of multicell concrete-filled steel tube columns under eccentric loading [J]. Journal of Constructional Steel Research, 2020, 172: 106218. DOI: 10.1016/j.jcsr.2020.106218.
    [4] KOCH S, DUVIGNEAU F, ORSZULIK R, et al. Partial filling of a honeycomb structure by granular materials for vibration and noise reduction [J]. Journal of Sound and Vibration, 2017, 393: 30–40. DOI: 10.1016/j.jsv.2016.11.024.
    [5] XIE S C, YANG S C, YANG C X, et al. Sound absorption performance of a filled honeycomb composite structure [J]. Applied Acoustics, 2020, 162: 107202. DOI: 10.1016/j.apacoust.2019.107202.
    [6] XIE B, CHENG W L, XU Z M. Studies on the effect of shape-stabilized PCM filled aluminum honeycomb composite material on thermal control [J]. International Journal of Heat and Mass Transfer, 2015, 91: 135–143. DOI: 10.1016/j.ijheatmasstransfer.2015.07.108.
    [7] KUMAR S J A, KUMAR S J A. Low-velocity impact damage and energy absorption characteristics of stiffened syntactic foam core sandwich composites [J]. Construction and Building Materials, 2020, 246: 118412. DOI: 10.1016/j.conbuildmat.2020.118412.
    [8] 杨德庆, 马涛, 张梗林. 舰艇新型宏观负泊松比效应蜂窝舷侧防护结构 [J]. 爆炸与冲击, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.

    YANG D Q, MA T, ZHANG G L. A novel auxetic broadside defensive structure for naval ships [J]. Explosion and Shock Waves, 2015, 35(2): 243–248. DOI: 10.11883/1001-1455(2015)02-0243-06.
    [9] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1997.
    [10] QI D X, LU Q Y, HE C W, et al. Impact energy absorption of functionally graded chiral honeycomb structures [J]. Extreme Mechanics Letters, 2019, 32: 100568. DOI: 10.1016/j.eml.2019.100568.
    [11] 任毅如, 蒋宏勇, 金其多, 等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性 [J]. 航空学报, 2021, 42(3): 223978. DOI: 10.7527/S1000-6893.2020.23978.

    REN Y R, JIANG H Y, JIN Q D, et al. Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson’s ratio [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 223978. DOI: 10.7527/S1000-6893.2020.23978.
    [12] ZHONG R C, FU M H, CHEN X, et al. A novel three-dimensional mechanical metamaterial with compression-torsion properties [J]. Composite Structures, 2019, 226: 111232. DOI: 10.1016/j.compstruct.2019.111232.
    [13] MONTGOMERY S M, KUANG X, ARMSTRONG C D, et al. Recent advances in additive manufacturing of active mechanical metamaterials [J]. Current Opinion in Solid State and Materials Science, 2020, 24(5): 100869. DOI: 10.1016/j.cossms.2020.100869.
    [14] ZHOU H Y, JIA K C, WANG X J, et al. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs [J]. Thin-Walled Structures, 2020, 154: 106898. DOI: 10.1016/j.tws.2020.106898.
    [15] XUE T, MENG J G, JIN Z H. Study on the performance of honeycomb ceramics carrier based on the ordinary paper [J]. Materials Science and Engineering: A, 2011, 528(29/30): 8512–8516. DOI: 10.1016/j.msea.2011.07.051.
    [16] CHEN X J, YU G C, WANG Z X, et al. Enhancing out-of-plane compressive performance of carbon fiber composite honeycombs [J]. Composite Structures, 2021, 255: 112984. DOI: 10.1016/j.compstruct.2020.112984.
    [17] WU H H, SUI L, ZHOU T H, et al. Estimation of lateral stiffness for gypsum-filled cold-formed steel shear walls [J]. Structures, 2021, 32: 28–37. DOI: 10.1016/j.istruc.2021.02.067.
    [18] MOHAMADI Y, AHMADI H, RAZMKHAH O, et al. Axial crushing responses of aluminum honeycomb structures filled with elastomeric polyurethane foam [J]. Thin-Walled Structures, 2021, 164: 107785. DOI: 10.1016/j.tws.2021.107785.
    [19] LIU Q, FU J, WANG J S, et al. Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam [J]. Composites Part B: Engineering, 2017, 130: 236–247. DOI: 10.1016/j.compositesb.2017.07.041.
    [20] BAI J W, LIAO X, HUANG E B, et al. Control of the cell structure of microcellular silicone rubber/nanographite foam for enhanced mechanical performance [J]. Materials & Design, 2017, 133: 288–298. DOI: 10.1016/j.matdes.2017.07.064.
    [21] GAO S Z, LI D, HOU H L, et al. Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles [J]. Thin-Walled Structures, 2020, 157: 107119. DOI: 10.1016/j.tws.2020.107119.
    [22] 何强, 马大为, 张震东. 含随机填充孔圆形蜂窝结构的面内冲击性能 [J]. 爆炸与冲击, 2015, 35(3): 401–408. DOI: 10.11883/1001-1455-(2015)03-0401-08.

    HE Q, MA D W, ZHANG Z D. In-plane impact behavior of circular honeycomb structures randomly filled with rigid inclusions [J]. Explosion and Shock Waves, 2015, 35(3): 401–408. DOI: 10.11883/1001-1455-(2015)03-0401-08.
    [23] CHEN C, LU T J, FLECK N A. Effect of inclusions and holes on the stiffness and strength of honeycombs [J]. International Journal of Mechanical Sciences, 2001, 43(2): 487–504. DOI: 10.1016/S0020-7403(99)00122-8.
    [24] PRAKASH O, BICHEBOIS P, BRECHET Y, et al. A note on the deformation behaviour of two-dimensional model cellular structures [J]. Philosophical Magazine A, 1996, 73(3): 739–751. DOI: 10.1080/01418619608242994.
    [25] NAKAMOTO H, ADACHI T, ARAKI W. In-plane impact behavior of honeycomb structures filled with linearly arranged inclusions [J]. International Journal of Impact Engineering, 2009, 36(8): 1019–1026. DOI: 10.1016/j.ijimpeng.2009.01.004.
    [26] NAKAMOTO H, ADACHI T, ARAKI W. In-plane impact behavior of honeycomb structures randomly filled with rigid inclusions [J]. International Journal of Impact Engineering, 2009, 36(1): 73–80. DOI: 10.1016/j.ijimpeng.2008.04.004.
    [27] 闫晓刚, 张勇, 林继铭, 等. 新颖圆形多胞复合填充结构的耐撞性 [J]. 复合材料学报, 2018, 35(8): 2166–2176. DOI: 10.13801/j.cnki.fhclxb.20170906.001.

    YAN X G, ZHANG Y, LIN J M, et al. Crashworthiness for novel circular multi-cell composite filling structures [J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2166–2176. DOI: 10.13801/j.cnki.fhclxb.20170906.001.
    [28] BAYKASOĞLU A, BAYKASOĞLU C, CETIN E. Multi-objective crashworthiness optimization of lattice structure filled thin-walled tubes [J]. Thin-Walled Structures, 2020, 149: 106630. DOI: 10.1016/j.tws.2020.106630.
    [29] KIM D H, KIM S W. Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis [J]. Composite Structures, 2019, 210: 676–686. DOI: 10.1016/j.compstruct.2018.11.086.
    [30] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.

    JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
    [31] GODOY L A. Buckling of vertical oil storage steel tanks: review of static buckling studies [J]. Thin-Walled Structures, 2016, 103: 1–21. DOI: 10.1016/j.tws.2016.01.026.
    [32] ZHANG Y H, WU X D, LU G Y, et al. Experimental and numerical studies on dynamic responses of liquid-filled hemispherical shell under axial impact [J]. Thin-Walled Structures, 2018, 131: 606–618. DOI: 10.1016/j.tws.2018.07.003.
    [33] CHEN Y, HUANG W, CONSTANTINI S. Blast shock wave mitigation using the hydraulic energy redirection and release technology [J]. PLoS One, 2012, 7(6): e39353. DOI: 10.1371/journal.pone.0039353.
    [34] 金键, 侯海量, 吴梵, 等. 战斗部近炸下防护液舱破坏机理分析 [J]. 国防科技大学学报, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024.

    JIN J, HOU H L, WU F, et al. Analysis of failure mechanism on protective liquid cabin under warhead close explosion [J]. Journal of National University of Defense Technology, 2019, 41(2): 163–169. DOI: 10.11887/j.cn.201902024.
    [35] JIN J, HOU H L, CHEN P Y, et al. Experimental study on the combined damage of liquid cabin structure subjected to charge explosion with preset fragments [J]. International Journal of Impact Engineering, 2019, 130: 19–26. DOI: 10.1016/j.ijimpeng.2019.04.001.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  160
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 录用日期:  2022-01-24
  • 修回日期:  2021-07-01
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回