含能微球敏化乳化炸药水下爆炸能量输出特性研究

李雪交 吴勇 王琦 高玉刚 汪泉 王奕鑫 马宏昊

李雪交, 吴勇, 王琦, 高玉刚, 汪泉, 王奕鑫, 马宏昊. 含能微球敏化乳化炸药水下爆炸能量输出特性研究[J]. 爆炸与冲击, 2022, 42(3): 032301. doi: 10.11883/bzycj-2021-0188
引用本文: 李雪交, 吴勇, 王琦, 高玉刚, 汪泉, 王奕鑫, 马宏昊. 含能微球敏化乳化炸药水下爆炸能量输出特性研究[J]. 爆炸与冲击, 2022, 42(3): 032301. doi: 10.11883/bzycj-2021-0188
LI Xuejiao, WU Yong, WANG Qi, GAO Yugang, WANG Quan, WANG Yixin, MA Honghao. Study on energy output characteristics of underwater explosion of energetic microballoon sensitized emulsion explosive[J]. Explosion And Shock Waves, 2022, 42(3): 032301. doi: 10.11883/bzycj-2021-0188
Citation: LI Xuejiao, WU Yong, WANG Qi, GAO Yugang, WANG Quan, WANG Yixin, MA Honghao. Study on energy output characteristics of underwater explosion of energetic microballoon sensitized emulsion explosive[J]. Explosion And Shock Waves, 2022, 42(3): 032301. doi: 10.11883/bzycj-2021-0188

含能微球敏化乳化炸药水下爆炸能量输出特性研究

doi: 10.11883/bzycj-2021-0188
基金项目: 国家自然科学基金(11872002);安徽省自然科学基金(1808085QA06);安徽省博士后基金(2019B355)
详细信息
    作者简介:

    李雪交(1986- ),男,博士,副教授,xjli@aust.edu.cn

    通讯作者:

    吴 勇(1996- ),男,硕士研究生,aust_xyeb@163.com

  • 中图分类号: O389

Study on energy output characteristics of underwater explosion of energetic microballoon sensitized emulsion explosive

  • 摘要: 将内部含有烷烃的含能微球引入乳化基质,得到一种新型乳化炸药。采用水下爆炸实验探究微球质量分数对乳化炸药水下爆炸性能的影响,得到含能微球质量分数为0.2%~7%的乳化炸药水下爆炸冲击波压力-时程曲线。依据压力结果,通过公式计算和分析得到炸药的水下冲击波峰值压力、比气泡能、比冲击波能以及比爆炸能等水下爆炸参数。实验结果表明:含能微球质量分数0.2%的乳化炸药的峰值压力最大,并且随着微球质量分数增大而下降;乳化炸药的比气泡能随着含能微球质量分数的增大先上升再下降,微球质量分数为4%的比气泡能最大;乳化炸药的爆速、比冲击波能以及比爆炸能均随着含能微球质量分数的增大而下降。
  • 图  1  含能微球SEM图

    Figure  1.  SEM images of energitic microballoons

    图  2  不同微球质量分数的乳化炸药微观形貌

    Figure  2.  Microscopic morphology of emulsion explosive with different mass fraction of microballoon

    图  3  水下爆炸系统示意

    Figure  3.  Schematic diagram of the underwater explosion system

    图  4  水下爆炸压力时程曲线

    Figure  4.  Underwater explosion pressure-time curves

    图  5  不同微球质量分数下乳化炸药爆速

    Figure  5.  Detonation velocity of emulsion explosive with different mass fraction of microballoon

    图  6  不同微球质量分数乳化炸药峰值压力(pm)与距离(R)的关系

    Figure  6.  Changes of maximum pressure (pm) with distance (R) at different microballoon mass fractions in emulsion explosives

    图  7  不同微球质量分数的乳化炸药的比冲击波能(Es)与距离(R)的关系

    Figure  7.  Specific shock wave energy (Es) vary to distance (R) at different microballoon mass fractions of emulsion explosive

    图  8  不同测距下的比气泡能Eb与微球质量分数的关系

    Figure  8.  Relation of specific bubble energy (Eb) and mass fraction of microballoon at different measuring distances

    图  9  不同测距下比爆炸能Et与微球质量分数关系图

    Figure  9.  Relation of specific explosion energy (Et) and mass fraction of microballoon at different measuring distances

    图  10  距离炸药中心0.8和1.0 m处的压力时程曲线

    Figure  10.  Pressure-time curves at 0.8 and 1.0 m from charge center

    表  1  乳化基质各组分的质量分数

    Table  1.   Mass fraction of compositions in emulsion matrix

    NH4NO3NaNO3H2OC18H38C24H44O6
    71%11.5%11%3.7%2.8%
    下载: 导出CSV

    表  2  不同含能微球质量分数的乳化炸药配比

    Table  2.   Ratio of emulsion explosive with different energitic microballoon mass fractions

    编号微球质量分数/%密度/(g·cm−3
    乳化基质含能微球
    110001.26
    299.950.051.26
    399.90.11.26
    499.80.21.25
    599.50.51.18
    69911.08
    79730.92
    89640.88
    99550.81
    109370.60
    119280.54
    129190.49
    下载: 导出CSV

    表  3  不同微球质量分数下乳化炸药爆速

    Table  3.   Detonation velocity of emulsion explosives with different mass fraction of microballoon

    质量分数/%爆速/(m·s−1) 质量分数/%爆速/(m·s−1)
    033903
    0.0543537
    0.153312
    0.2515073058
    0.5491182948
    148079
    注:“−”代表拒爆
    下载: 导出CSV

    表  4  不同微球质量分数的乳化炸药压力峰值拟合系数

    Table  4.   Fit coefficient of pressure peak value of emulsion explosives with different mass fraction of microballoon

    质量分数/%αk
    0.20.5727621.46552
    10.5511419.27505
    30.5684718.21896
    40.6279517.36348
    50.6405818.64361
    70.6118218.44948
    下载: 导出CSV

    表  5  乳化炸药水下爆炸能量输出参数

    Table  5.   Parameters of underwater explosion energy of emulsion explosives

    质量分数/%R/mpm/MPaEs/(MJ·kg−1)tb/msEb/(MJ·kg−1)μEt/(MJ·kg−1)
    0.20.812.41810.852573.58381.65421.7253.1248
    1.011.05360.850773.57311.65331.7253.1208
    1.29.94200.854973.39451.64171.7253.1164
    1.48.97000.845873.58911.65431.7253.1133
    10.811.39150.800974.04421.68471.6062.9709
    1.010.18390.803674.02071.68291.6062.9735
    1.29.13650.798974.00691.68221.6062.9652
    1.48.36460.794374.07311.68641.6062.9620
    30.810.59150.719674.96391.74681.3922.7485
    1.09.41570.723375.02521.75081.3922.7576
    1.28.47930.714974.88311.74131.3922.7364
    1.47.67560.715875.05621.75281.3922.7492
    40.810.32470.691876.19431.83241.3202.7456
    1.09.03440.691176.17551.83121.3202.7435
    1.28.02630.684176.12551.82791.3202.7309
    1.47.35040.694276.18341.83171.3202.7347
    50.810.16230.665976.00291.81021.2872.7006
    1.08.80410.672875.96831.81291.2872.6978
    1.27.81250.661675.98121.80921.2872.6907
    1.47.11490.667275.94581.79071.2872.6954
    70.89.60410.590575.12261.75521.1742.4484
    1.08.25010.595175.17631.76121.1742.4598
    1.27.45700.599375.14431.75901.1742.4625
    1.46.74460.584275.13431.75841.1742.4442
    下载: 导出CSV
  • [1] 汪旭光. 乳化炸药 [M]. 北京: 冶金工业出版社, 1993: 1−15.
    [2] LOUREIRO A, MENDES R, RIBEIRO J B, et al. Effect of explosive mixture on quality of explosive welds of copper to aluminium [J]. Materials & Design, 2016, 95: 256–267. DOI: 10.1016/j.matdes.2016.01.116.
    [3] BIEGAŃSKA J. Using nitrocellulose powder in emulsion explosives [J]. Combustion, Explosion, and Shock Waves, 2011, 47(3): 366–368. DOI: 10.1134/S0010508211030154.
    [4] 张学民, 周贤舜, 王立川, 等. 大断面隧道钻爆冲击波的衰减规律 [J]. 爆炸与冲击, 2020, 40(2): 025101. DOI: 10.11883/bzycj-2019-0045.

    ZHANG X M, ZHOU X S, WANG L C, et al. Attenuation of blast wave in a large-section tunnel [J]. Explosion and Shock Waves, 2020, 40(2): 025101. DOI: 10.11883/bzycj-2019-0045.
    [5] MISHRA A, ROUT M, SINGH D R, et al. Influence of density of emulsion explosives on its velocity of detonation and fragmentation of blasted muckpile [J]. Current Science, 2017, 112(3): 602–608. DOI: 10.18520/cs/v112/i03/602-608.
    [6] CHENG Y F, MENG X R, FENG C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585–591. DOI: 10.1002/prep.201700045.
    [7] 钱海, 吴红波, 邢化岛, 等. 铝粉含量和粒径对乳化炸药作功能力的影响 [J]. 火炸药学报, 2017, 40(1): 40–44. DOI: 10.14077/j.issn.1007-7812.2017.01.008.

    QIAN H, WU H B, XING H D, et al. Effect of aluminum content and particle size on the power of emulsion explosives [J]. Chinese Journal of Explosives & Propellants, 2017, 40(1): 40–44. DOI: 10.14077/j.issn.1007-7812.2017.01.008.
    [8] 陈海军, 马宏昊, 沈兆武, 等. 钛基纤维炸药水下爆炸性能的初步分析 [J]. 爆炸与冲击, 2018, 38(1): 9–18. DOI: 10.11883/bzycj-2017-0155.

    CHEN H J, MA H H, SHEN Z W, et al. Preliminary analysis of underwater detonation performance of titanium fiber explosive [J]. Explosion and Shock Waves, 2018, 38(1): 9–18. DOI: 10.11883/bzycj-2017-0155.
    [9] 程扬帆, 汪泉, 龚悦, 等. 敏化方式对MgH2型储氢乳化炸药爆轰性能的影响 [J]. 含能材料, 2017, 25(2): 167–172. DOI: 10.11943/j.issn.1006-9941.2017.02.013.

    CHENG Y F, WANG Q, GONG Y, et al. Effect of sensitizing methods on the detonation performances of MgH2-based hydrogen storage emulsion explosives [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 167–172. DOI: 10.11943/j.issn.1006-9941.2017.02.013.
    [10] SIL’VESTROV V V, BORDZILOVSKII S A, KARAKHANOV S M, et al. Temperature of the detonation front of an emulsion explosive [J]. Combustion, Explosion, and Shock Waves, 2015, 51(1): 116–123. DOI: 10.1134/S0010508215010128.
    [11] FANG H, CHENG Y F, TAO C, et al. Effects of content and particle size of cenospheres on the detonation characteristics of emulsion explosive [J]. Journal of Energetic Materials, 2021, 39(2): 197–214. DOI: 10.1080/07370652.2020.1770896.
    [12] WANG Y X, MA H H, SHEN Z W, et al. Influence of different gases on the performance of gas-storage glass microballoons in emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(10): 1566–1572. DOI: 10.1002/prep.202000105.
    [13] YUNOSHEV A S, PLASTININ A V, RAFEICHIK S I. Detonation velocity of an emulsion explosive sensitized with polymer microballoons [J]. Combustion, Explosion, and Shock Waves, 2017, 53(6): 738–743. DOI: 10.1134/S0010508217060168.
    [14] BARNES R A, HETHERINGTON J G, SMITH P D. The design and instrumentation of a simple system for demonstrating underwater explosive effects [J]. Propellants, Explosives, Pyrotechnics, 1988, 13(1): 13–16. DOI: 10.1002/prep.19880130104.
    [15] COLE R H. Underwater explosions [M]. Princeton: Princeton University Press, 1948: 110−113.
    [16] BJARNHOLT G. Suggestions on standards for measurement and data evaluation in the underwater explosion test [J]. Propellants, Explosives, Pyrotechnics, 1980, 5(2−3): 67–74. DOI: 10.1002/prep.19800050213.
    [17] 薛冰. RDX基金属氢化物混合炸药爆炸及安全性能研究 [D]. 合肥: 中国科学技术大学, 2017: 72−73.

    XUE B. Explosion and safety performance of RDX-based metal hydride composite explosives [D]. Hefei: University of Science and Technology of China, 2017: 72−73.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  230
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-09-22
  • 网络出版日期:  2022-03-17
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回