304L/Q235B大面积金属板爆炸焊接物质点法模拟分析

王宇新 李晓杰 杨国俊 范述宁 王小红 闫鸿浩

王宇新, 李晓杰, 杨国俊, 范述宁, 王小红, 闫鸿浩. 304L/Q235B大面积金属板爆炸焊接物质点法模拟分析[J]. 爆炸与冲击, 2022, 42(3): 035301. doi: 10.11883/bzycj-2021-0198
引用本文: 王宇新, 李晓杰, 杨国俊, 范述宁, 王小红, 闫鸿浩. 304L/Q235B大面积金属板爆炸焊接物质点法模拟分析[J]. 爆炸与冲击, 2022, 42(3): 035301. doi: 10.11883/bzycj-2021-0198
WANG Yuxin, LI Xiaojie, YANG Guojun, FAN Shuning, WANG Xiaohong, YAN Honghao. Simulation and analysis of explosive welding of large-area 304L/Q235B metal plates by material point method[J]. Explosion And Shock Waves, 2022, 42(3): 035301. doi: 10.11883/bzycj-2021-0198
Citation: WANG Yuxin, LI Xiaojie, YANG Guojun, FAN Shuning, WANG Xiaohong, YAN Honghao. Simulation and analysis of explosive welding of large-area 304L/Q235B metal plates by material point method[J]. Explosion And Shock Waves, 2022, 42(3): 035301. doi: 10.11883/bzycj-2021-0198

304L/Q235B大面积金属板爆炸焊接物质点法模拟分析

doi: 10.11883/bzycj-2021-0198
基金项目: 国家自然科学基金(12072067)
详细信息
    作者简介:

    王宇新(1972— ),男,博士,副教授,wyxphd@dlut.edu.cn

    通讯作者:

    李晓杰(1963— ),男,博士,教授,博士生导师,dalian03@qq.com

  • 中图分类号: O389

Simulation and analysis of explosive welding of large-area 304L/Q235B metal plates by material point method

  • 摘要: 大面积金属板材304L/Q235B的爆炸焊接过程涉及炸药爆轰、金属板材的高速碰撞和塑性变形等。采用有限元法计算模拟这个问题时,网格单元会发生扭曲畸变现象,导致计算精度下降,甚至出现单元负体积而使计算终止,并且炸药爆轰形成气体产物飞散过程也很难模拟。为了能模拟大面积金属板材的爆炸焊接整个过程并获得合理的技术工艺参数,采用物质点法进行三维数值模拟分析。物质点法作为一种无网格法,在模拟冲击动力学问题中主要采用显式积分算法。通过将拉格朗日质点单元与固定的欧拉背景网格相结合,可以实现爆炸焊接的复板与基板的高速碰撞、炸药滑移爆轰、金属板面的塑性变形过程的数值模拟,并给出爆炸复合板材的形变、有效塑性应变和复板与基板的碰撞速度的计算结果。采用物质点法模拟的复合板材变形与爆炸焊接实验结果基本一致。计算复板与基板的碰撞速度这个重要的物理参数时,物质点法与Richter理论公式的相对误差不超过13%。数值计算和实验结果表明,物质点法在数值精度和计算效率方面具有优势,物质点法是研究金属焊接爆炸问题的一种有效数值方法。
  • 图  1  背景网格与粒子单元

    Figure  1.  Background meshes and particles

    图  2  爆炸焊接布置

    Figure  2.  Distribution pattern of explosive welding

    图  3  爆炸焊接前处理模型

    Figure  3.  The preprocessing models for explosive welding

    图  4  爆炸焊接全过程的模拟

    Figure  4.  Simulation of the whole process of explosive welding

    图  5  金属板材的有效塑性应变

    Figure  5.  Effective plastic strains of the metal plates

    图  6  金属板材的碰撞速度

    Figure  6.  Impact velocities of the metal plates

    图  7  爆炸焊接的304L/Q235B复合板

    Figure  7.  An explosive-welded 304L/Q235B plate

    图  8  爆炸焊接的304L/Q235B复合板边缘

    Figure  8.  Edge of the explosive-welded 304L/Q235B plate

    图  9  复板的碰撞速度曲线

    Figure  9.  Impact velocity curves of the clad plate

    表  1  304L/Q235B材料模型参数[14-15]

    Table  1.   Material parameters for 304L/Q235B[14-15]

    材料ρ/(kg·m−3)E/GPavA/MPaB/MPanC$ \dot{{\varepsilon }_{0}} $/s−1
    Q235B7 8502100.33802750.360.0220.001
    304L7 9302000.32703500.650.0700.001
    下载: 导出CSV
  • [1] 邵丙璜, 张凯. 爆炸焊接原理及工程应用 [M]. 大连: 大连工学院出版社, 1987: 1−5, 22−33.
    [2] CORIGLIANO P, CRUPI V, GUGLIELMINO E. Non linear finite element simulation of explosive welded joints of dissimilar metals for shipbuilding applications [J]. Ocean Engineering, 2018, 160: 346–353. DOI: 10.1016/j.oceaneng.2018.04.070.
    [3] GRIGNON F, BENSON D, VECCHIO K S, et al. Explosive welding of aluminum to aluminum: analysis, computations and experiments [J]. International Journal of Impact Engineering, 2004, 30(10): 1333–1351. DOI: 10.1016/j.ijimpeng.2003.09.049.
    [4] 王宇新, 杨文彬, 李晓杰. 爆炸焊接二维复板飞行姿态计算机仿真 [J]. 爆破器材, 1999, 28(5): 1–4. DOI: 10.3969/j.issn.1001-8352.1999.05.001.

    WANG Y X, YANG W B, LI X J. Computerized simulation of two dimensional flying attitude of fly plate in explosive welding [J]. Explosive Materials, 1999, 28(5): 1–4. DOI: 10.3969/j.issn.1001-8352.1999.05.001.
    [5] 王宇新, 李晓杰, 闫鸿浩, 等. 爆炸焊接CAE软件开发及工程应用 [J]. 工程爆破, 2018, 24(1): 1–7, 26. DOI: 10.3969/j.issn.1006-7051.2018.01.001.

    WANG Y X, LI X J, YAN H H, et al. CAE software development and engineering application of explosive welding [J]. Engineering Blasting, 2018, 24(1): 1–7, 26. DOI: 10.3969/j.issn.1006-7051.2018.01.001.
    [6] ZHANG Z L, LIU M B. Numerical studies on explosive welding with ANFO by using a density adaptive SPH method [J]. Journal of Manufacturing Processes, 2019, 41: 208–220. DOI: 10.1016/j.jmapro.2019.03.039.
    [7] SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179–196. DOI: 10.1016/0045-7825(94)90112-0.
    [8] WIĘZCKOWSKI Z. The material point method in large strain engineering problems [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(39/40/41): 4417–4438. DOI: 10.1016/j.cma.2004.01.035.
    [9] WANG Y X, BEOM H G, SUN M, et al. Numerical simulation of explosive welding using the material point method [J]. International Journal of Impact Engineering, 2011, 38(1): 51–60. DOI: 10.1016/j.ijimpeng.2010.08.003.
    [10] ZHANG D Z, ZOU Q S, VANDERHEYDEN W B, et al. Material point method applied to multiphase flows [J]. Journal of Computational Physics, 2008, 227(6): 3159–3173. DOI: 10.1016/j.jcp.2007.11.021.
    [11] CHEN Z, HU W, SHEN L, et al. An evaluation of the MPM for simulating dynamic failure with damage diffusion [J]. Engineering Fracture Mechanics, 2002, 69(17): 1873–1890. DOI: 10.1016/S0013-7944(02)00066-8.
    [12] HU W Q, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM [J]. International Journal of Impact Engineering, 2006, 32(12): 2066–2096. DOI: 10.1016/j.ijimpeng.2005.05.004.
    [13] 黄鹏, 张雄, 马上, 等. 基于OpenMP的三维显式物质点法并行化研究 [J]. 计算力学学报, 2010, 27(1): 21–27. DOI: 10.7511/jslx20101004.

    HUANG P, ZHANG X, MA S, et al. Parallelization of 3D explicit material point method using OpenMP [J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 21–27. DOI: 10.7511/jslx20101004.
    [14] JOHNSON G R, COOK W H. Fracture Characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [15] 王宇新, 李晓杰, 王小红, 等. 爆炸焊接界面波物质点法三维数值模拟 [J]. 爆炸与冲击, 2014, 34(6): 716–722. DOI: 10.11883/1001-1455(2014)06-0716-07.

    WANG Y X, LI X J, WANG X H, et al. Numerical simulation on interfacial wave formation in explosive welding using material point method [J]. Explosion and Shock Waves, 2014, 34(6): 716–722. DOI: 10.11883/1001-1455(2014)06-0716-07.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  378
  • HTML全文浏览量:  270
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 录用日期:  2022-01-26
  • 修回日期:  2021-06-24
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回