Blast loads on the inner wall of cylindrical explosion containment vessel
-
摘要: 爆炸容器内壁所受爆炸载荷的确定是容器动态响应特征研究、容器结构设计及安全评估的基础。对自行研制的组合式圆柱形爆炸容器开展了系列内爆加载试验,测量了容器内壁几个典型位置所受爆炸载荷,并利用ANSYS/LS-DYNA软件对容器内爆载荷的形成和传播全过程进行了数值模拟。通过对试验结果进行分析,获得了容器内壁所受爆炸载荷的特征及其分布规律,并拟合出容器圆柱形壳体部分所受载荷首脉冲的峰值压力、正压作用时间和比冲量经验计算公式、容器内部准静态压力经验计算公式。通过对数值模拟结果进行分析,阐明了容器内壁所受爆炸载荷特征和分布规律的形成机理。研究结果表明,椭球端盖内壁产生的马赫反射波在端盖极点汇聚,使得极点所受载荷峰值压力及单次脉冲比冲量峰值总是所有测点中最大的,峰值压力最高可达圆柱壳所受最大压力的2.79倍,应予以足够重视。Abstract: The determination of the blast loads acting on the inner wall of explosion containment eessels (ECVs) is the basis for the study of the dynamic response characteristics, the design of structure and the safety assessment of ECVs. In order to obtain the characteristics and distribution law of the blast loads acting on the inner wall of cylindrical explosive containment vessels when the central charge is exploded, a series of implosion loading tests were carried out on the self-developed combined cylindrical explosion containment vessel, with the blast loads acting on several typical positions of the inner wall of the vessel being measured, while by using ANSYS/LS-DYNA software, a simplified model of 1/8 of the vessel is established to numerically simulate the whole process of formation and propagation of the internal detonation field of the vessel. Through the analysis of the test results, the characteristics of the blast loading on the inner wall of the vessel and its distribution law are obtained, and the empirical calculation formulas for the peak pressure, positive pressure action time and specific impulse of the first pulse of blast loads acting on the inner wall of the cylindrical shell part of the vessel, and the empirical calculation formulas for the quasi-static pressure inside the vessel are fitted. By analyzing the numerical simulation results, the formation mechanism of the characteristics and distribution law of the blast loads on the inner wall of the vessel are clarified. The research results show that the Mach reflection waves generated from the inner wall of the ellipsoid end cap converge at the end cap pole, so that the peak pressure and the peak specific impulse of single pulse of the blast loading on the pole are always the biggest among all the measurement points, and the maximum peak pressure of the load can reach 2.79 times the maximum peak pressure that acting on the cylindrical shell, which should be paid a close attention.
-
表 1 峰值压力试验结果
Table 1. Test results of the peak pressure
试验
编号装药
质量/g装药
位置峰值压力/MPa P1测点 P2测点 P3测点 P4测点 P5测点 实测 计算 误差 实测 计算 误差 实测 计算 误差 实测 计算 误差 实测 计算 误差 1 26.7 O 2.64 2.11 0.25 1.83 1.78 0.03 1.08 1.18 0.09 0.61 0.73 0.16 2.72 0.34 7.05 2 27.1 O 2.36 2.14 0.10 1.56 1.80 0.13 0.97 1.20 0.19 0.61 0.74 0.17 2.89 0.34 7.44 3 26.7 O 2.41 2.11 0.14 1.61 1.78 0.09 0.98 1.18 0.17 0.59 0.73 0.19 3.01 0.34 7.91 6 63.7 O 5.33 4.48 0.19 4.71 3.78 0.25 2.58 2.51 0.03 1.21 1.55 0.22 6.93 0.72 8.65 7 64.8 O 5.42 4.55 0.19 4.83 3.83 0.26 2.77 2.55 0.09 1.23 1.57 0.22 14.48 0.73 18.87 8 64.4 O 5.76 4.52 0.27 4.80 3.81 0.26 2.33 2.53 0.08 1.20 1.56 0.23 9.18 0.73 11.67 9 64.7 O 5.11 4.54 0.13 4.75 3.83 0.24 2.68 2.54 0.05 1.13 1.57 0.28 14.26 0.73 18.59 10 64.1 O 5.58 4.51 0.24 4.61 3.80 0.21 2.66 2.52 0.05 1.29 1.56 0.17 13.41 0.72 17.58 15 105.7 O 7.34 6.95 0.06 5.93 5.86 0.01 4.34 3.89 0.12 2.30 2.40 0.04 19.07 1.11 16.20 16 105.2 O 7.73 6.92 0.12 5.87 5.83 0.01 4.26 3.88 0.10 1.93 2.39 0.19 1.11 21 154.5 O 11.44 9.66 0.18 8.70 8.14 0.07 6.50 5.41 0.20 3.13 3.34 0.06 13.77 1.55 7.90 22 154.3 O 11.49 9.65 0.19 9.10 8.13 0.12 6.14 5.40 0.14 3.33 3.33 0 13.69 1.55 7.86 23 155.2 O 11.17 9.70 0.15 10.28 8.17 0.26 5.99 5.43 0.10 2.85 3.35 0.15 18.30 1.55 10.78 24 154.2 O 10.88 9.64 0.13 9.92 8.13 0.22 5.86 5.40 0.09 2.91 3.33 0.13 1.55 25 154.7 O 11.52 9.67 0.19 9.23 8.15 0.13 5.76 5.41 0.06 2.91 3.34 0.13 1.55 表 2 测点各次脉冲的比冲量
Table 2. Specific impulses of each pulse at each measurement points
试验
编号装药
质量/g比冲量/(Pa∙s) P1测点 P2测点 P3测点 P4测点 P5测点 1st 2nd 3rd 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 5th 6th 1 26.7 156 48 127 138 51 65 107 75 123 89 117 115 53 393 95 62 536 65 2 27.1 130 50 80 143 35 81 106 61 132 91 94 125 56 426 116 78 540 93 3 26.7 150 64 95 120 64 61 109 69 119 83 83 105 55 394 112 42 495 69 6 63.7 267 92 200 244 108 156 221 107 203 235 155 151 139 152 104 717 304 163 862 342 7 64.8 299 166 206 227 122 149 215 126 223 213 146 127 140 138 88 577 250 88 777 290 8 64.4 295 175 214 256 131 154 199 116 197 253 157 129 147 132 79 688 180 97 758 359 9 64.7 247 154 246 265 129 175 219 107 240 213 147 114 166 147 77 620 150 34 633 270 10 64.1 292 156 212 244 121 154 190 112 210 241 147 120 153 143 69 604 218 82 674 270 15 105.7 418 223 476 379 194 169 297 142 178 281 206 70 103 179 339 705 199 218 883 339 16 105.2 410 263 495 350 185 155 286 156 257 305 184 88 77 162 21 154.5 437 211 571 485 187 158 253 356 149 281 180 265 63 127 297 159 459 795 462 1084 357 22 154.3 593 288 559 517 211 158 290 412 161 205 280 62 141 280 194 405 866 524 1071 445 23 155.2 494 250 577 460 195 143 270 367 152 280 175 249 85 97 279 162 429 713 492 1054 234 24 154.2 630 327 707 474 225 142 335 367 189 308 248 107 81 256 25 154.7 557 294 624 461 225 162 321 357 170 297 189 236 90 88 246 表 3 测点首脉冲正压作用时间
Table 3. Positive pressures action time of the first pulse at each measurement points
试验
编号正压作用时间/ms P1测点 P2测点 P3测点 P4测点 试验 计算 误差 试验 计算 误差 试验 计算 误差 试验 计算 误差 1 0.349 0.376 0.072 0.361 0.396 0.089 0.439 0.449 0.022 0.507 0.520 0.024 2 0.345 0.377 0.084 0.402 0.397 0.013 0.465 0.449 0.035 0.552 0.520 0.061 3 0.357 0.376 0.051 0.411 0.396 0.037 0.453 0.449 0.009 0.538 0.520 0.035 6 0.404 0.400 0.010 0.436 0.421 0.035 0.439 0.477 0.080 0.584 0.552 0.057 7 0.406 0.400 0.014 0.412 0.422 0.023 0.516 0.478 0.081 0.572 0.553 0.034 8 0.403 0.400 0.007 0.439 0.422 0.041 0.475 0.477 0.005 0.580 0.553 0.049 9 0.411 0.400 0.027 0.392 0.422 0.070 0.483 0.477 0.012 0.535 0.553 0.032 10 0.397 0.400 0.008 0.388 0.421 0.079 0.448 0.477 0.061 0.553 0.553 0.001 15 0.420 0.414 0.014 0.436 0.436 0.001 0.478 0.494 0.033 0.572 16 0.410 0.414 0.010 0.424 0.436 0.028 0.496 0.494 0.004 0.572 21 0.420 0.425 0.013 0.411 0.448 0.083 0.521 0.507 0.027 0.588 22 0.455 0.425 0.070 0.418 0.448 0.067 0.528 0.507 0.041 0.588 23 0.438 0.426 0.029 0.391 0.448 0.128 0.482 0.508 0.050 0.588 24 0.432 0.425 0.016 0.436 0.448 0.027 0.506 0.507 0.003 0.588 25 0.414 0.425 0.027 0.439 0.448 0.021 0.506 0.508 0.003 0.588 表 4 椭球端盖所受载荷峰值压力与圆柱壳体部分所受载荷峰值压力的比较
Table 4. Comparison between the peak pressure of the load on the ellipsoid end cap and the peak pressure of the load on the cylindrical shell
试验编号 装药质量/g 装药位置 试验/MPa p5/p1 试验编号 装药质量/g 装药位置 试验/MPa p5/p1 p5 p1 p5 p1 1 26.7 O 2.72 2.64 1.03 15 105.7 O 19.07 7.34 2.47 2 27.1 O 2.89 2.36 1.23 16 105.2 O 7.73 3 26.7 O 3.01 2.41 1.25 21 154.5 O 13.77 11.44 1.20 6 63.7 O 6.93 5.33 1.30 22 154.3 O 13.69 11.49 1.19 7 64.8 O 14.48 5.42 2.67 23 155.2 O 18.30 11.17 1.64 8 64.4 O 9.18 5.76 1.59 24 154.2 O 10.88 9 64.7 O 14.26 5.11 2.79 25 154.7 O 11.52 10 64.1 O 13.41 5.58 2.40 表 5 容器内部准静态压力平均值
Table 5. Average quasi-static pressures inside the vessel
平均装药质量/g 准静态平均压力/MPa 26.74 0.16 64.04 0.36 105.05 0.54 154.59 0.65 -
[1] 庞崇安, 王震. 立式柱形钢储罐内部爆炸数值模拟及动力响应分析 [J]. 爆破, 2015, 32(2): 54–58. DOI: 10.3963/j.issn.1001-487X.2015.02.010.PANG C A, WANG Z. Numerical simulation of internal explosion and dynamic response analysis for vertical cylindrical steel tanks [J]. Blasting, 2015, 32(2): 54–58. DOI: 10.3963/j.issn.1001-487X.2015.02.010. [2] 宁鹏飞, 唐德高. 起爆位置偏差对结构内爆炸荷载的影响分析 [J]. 浙江大学学报(工学版), 2012, 46(12): 2252–2258. DOI: 10.3785/j.issn.1008-973X.2012.12.017.NING P F, TANG D G. Influence analysis of ignition location departure on blast load of close range internal blast [J]. Journal of Zhejiang University (Engineering Science), 2012, 46(12): 2252–2258. DOI: 10.3785/j.issn.1008-973X.2012.12.017. [3] 叶序双. 爆炸力学基础 [M]. 南京: 解放军理工大学, 2004. [4] 张德志, 李焰, 钟方平, 等. 球形装药近距离爆炸正反射冲击波实验研究 [J]. 兵工学报, 2009, 30(12): 1663–1667. DOI: 10.3321/j.issn:1000-1093.2009.12.018.ZHANG D Z, LI Y, ZHONG F P, et al. Experiment investigations on normal reflected blast wave near the spherical explosive [J]. Acta Armamentarii, 2009, 30(12): 1663–1667. DOI: 10.3321/j.issn:1000-1093.2009.12.018. [5] 刘文祥, 张德志, 钟方平, 等. 球形爆炸容器内炸药爆炸形成的准静态气体压力 [J]. 爆炸与冲击, 2018, 38(5): 1045–1050. DOI: 10.11883/bzycj-2017-0056.LIU W X, ZHANG D Z, ZHONG F P, et al. Quasi-static gas pressure generated by explosive charge blasting in a spherical explosion containment vessel [J]. Explosion and Shock Waves., 2018, 38(5): 1045–1050. DOI: 10.11883/bzycj-2017-0056. [6] 赵士达. 爆炸容器 [J]. 爆炸与冲击, 1989, 9(1): 85–96.ZHAO S D. Blast chamber [J]. Explosion and Shock Waves, 1989, 9(1): 85–96. [7] DONG Q, LI Q M, ZHENG J Y. Interactive mechanisms between the internal blast loading and the dynamic elastic response of spherical containment vessels [J]. International Journal of Impact Engineering, 2010, 37(4): 349–358. DOI: 10.1016/j.ijimpeng.2009.10.004. [8] 霍宏发, 黄协清, 陈花玲, 等. 椭球封头圆柱形爆炸容器振动特性研究 [J]. 机械科学与技术, 2000, 19(6): 967–969. DOI: 10.3321/j.issn:1003-8728.2000.06.040.HUO H F, HUANG X Q, CHEN H L, et al. Experimental study on vibration characteristic of explosion vessel with cylindrical shells and ellipsoidal closures [J]. Mechanical Science and Technology, 2000, 19(6): 967–969. DOI: 10.3321/j.issn:1003-8728.2000.06.040. [9] 饶国宁, 陈网桦, 王立峰, 等. 内部爆炸载荷作用下容器动力响应的数值模拟 [J]. 中国安全科学学报, 2007, 17(2): 129–133. DOI: 10.3969/j.issn.1003-3033.2007.02.023.RAO G N, CHEN W H, WANG L F, et al. Numerical simulation of dynamic response of vessels subjected to internal load of blast [J]. China Safety Science Journal, 2007, 17(2): 129–133. DOI: 10.3969/j.issn.1003-3033.2007.02.023. [10] 张亚军, 张梦萍, 徐胜利, 等. 爆炸容器内冲击波系演化及壳体响应的数值研究 [J]. 爆炸与冲击, 2003, 23(4): 331–336.ZHANG Y J, ZHANG M P, XU S L, et al. Numerical investigation on blast wave propagation and dynamic response of an explosion vessel [J]. Explosion and shock waves, 2003, 23(4): 331–336. [11] DUFFEY T A, RODRIGUEZ E A, ROMERO C. Detonation-induced dynamic pressure loading in containment vessels: LA-UR-02-0366 [R]. Los Alamos, USA: Los Alamos National Laboratory, 2002. [12] 林俊德. 10 kg TNT爆炸罐物理设计总结 [R]. 西安: 西北核技术研究所, 1997.