波阻抗梯度材料加强型Whipple结构撞击极限研究

张品亮 曹燕 陈川 宋光明 武强 李宇 龚自正 李明

张品亮, 曹燕, 陈川, 宋光明, 武强, 李宇, 龚自正, 李明. 波阻抗梯度材料加强型Whipple结构撞击极限研究[J]. 爆炸与冲击, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230
引用本文: 张品亮, 曹燕, 陈川, 宋光明, 武强, 李宇, 龚自正, 李明. 波阻抗梯度材料加强型Whipple结构撞击极限研究[J]. 爆炸与冲击, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230
ZHANG Pinliang, CAO Yan, CHEN Chuan, SONG Guangming, WU Qiang, LI Yu, GONG Zizheng, LI Ming. Ballistic limit of an impedance-graded-material enhanced Whipple shield[J]. Explosion And Shock Waves, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230
Citation: ZHANG Pinliang, CAO Yan, CHEN Chuan, SONG Guangming, WU Qiang, LI Yu, GONG Zizheng, LI Ming. Ballistic limit of an impedance-graded-material enhanced Whipple shield[J]. Explosion And Shock Waves, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230

波阻抗梯度材料加强型Whipple结构撞击极限研究

doi: 10.11883/bzycj-2021-0230
基金项目: 国家重点研发计划 (2017YFB0702000);民用航天预研项目(D020304);空间碎片科研项目(KJSP2016030301)
详细信息
    作者简介:

    张品亮(1986- ),男,博士,高级工程师, zhangpinliang620@126.com

    通讯作者:

    龚自正(1964- ),男,博士,研究员,博士生导师, gongzz@263.net

  • 中图分类号: O389

Ballistic limit of an impedance-graded-material enhanced Whipple shield

  • 摘要: 为研究一种改进型的波阻抗梯度材料防护结构Ti/Al/Mg结构的撞击极限,采 用 二 级 轻 气 炮 以3.0~8.0 km/s的速度对Ti/Al/Mg结构、Al/Mg结构和2A12结构开展了超高速撞击实验,建立了Ti/Al/Mg结构的撞击极限曲线。结果表明:高阻抗的钛合金表层能产生更高的冲击压力和温升,使弹丸充分破碎;在面密度相同的条件下,与Al/Mg结构和2A12结构相比,Ti/Al/Mg结构具有更强的防护性能。通过理论计算得到Ti/Al/Mg结构撞击极限曲线的区间转变速度小于7.0 km/s,但其实验撞击极限曲线上并未出现明显的区间转变,在实验速度范围内,撞击极限随着撞击速度的提升而增大,这与典型Whipple结构撞击极限曲线存在差异。
  • 图  1  实验原理示意图

    Figure  1.  Schematic diagram of experimental configuration

    图  2  在约3.5 km/s速度撞击下后墙前表面和后表面(插图)损伤形貌

    Figure  2.  Photographs of damage patterns on the front and rear (inset) surfaces of the rear wall produced by an aluminum sphere impacting at about 3.5 km/s

    图  3  在约6.2 km/s速度撞击下,后墙前表面和后表面的损伤形貌

    Figure  3.  Photographs of damage patterns on the front and rear (inset) surfaces of the rear wall produced by an aluminum sphere impacting at about 6.2 km/s

    图  4  冲击压力和比内能与撞击速度的关系

    Figure  4.  Calculated shock pressure and specific internal energy as a function of the impact velocity

    图  5  撞击速度约3.5 km/s时Ti/Al/Mg结构后墙后表面损伤形貌

    Figure  5.  Photographs of damage to the rear surface of Ti/Al/Mg shield’s rear walls when the impact velocity is about 3.5 km/s

    图  6  撞击速度约5.0 km/s时Ti/Al/Mg结构后墙后表面损伤形貌

    Figure  6.  Photographs of damage to the rear surface of Ti/Al/Mg shield’s rear walls when the impact velocity is about 5.0 km/s

    图  7  撞击速度约6.5 km/s时Ti/Al/Mg结构后墙后表面损伤形貌

    Figure  7.  Photographs of damage to the rear surface of Ti/Al/Mg shield’s rear walls when the impact velocity is about 6.5 km/s

    图  8  撞击速度约7.0 km/s时Ti/Al/Mg结构后墙后表面损伤形貌

    Figure  8.  Photographs of damage to the rear surface of Ti/Al/Mg shield’s rear walls when the impact velocity is about 7.0 km/s

    图  9  撞击速度约8.0 km/s时Ti/Al/Mg结构后墙后表面损伤形貌

    Figure  9.  Photographs of damage to the rear surface of Ti/Al/Mg shield’s rear walls when the impact velocity is about 8.0 km/s

    图  10  Ti/Al/Mg结构和2A12结构的撞击极限

    Figure  10.  Ballistic limit curves and test data for Ti/Al/Mg shields compared to 2A12 shields

    表  1  超高速撞击实验参数与结果

    Table  1.   Hypervelocity impact test conditions and results

    实验结构类型撞击速度/(km·s−1弹丸直径/mm失效状态实验结构类型撞击速度/(km·s−1弹丸直径/mm失效状态
    1-1Ti/Al/Mg3.5123.99未失效2-12A123.5963.50未失效
    1-2Ti/Al/Mg3.4404.25未失效2-22A123.4403.75失效
    1-3Ti/Al/Mg3.4734.51失效2-32A123.4804.02失效
    1-4Ti/Al/Mg5.0514.74未失效2-42A126.5184.50未失效
    1-5Ti/Al/Mg4.9514.99未失效2-52A126.2964.74临界
    1-6Ti/Al/Mg4.8275.25失效2-62A126.4425.01失效
    1-7Ti/Al/Mg6.2275.77未失效2-72A127.1705.00失效
    1-8Ti/Al/Mg6.4006.00未失效2-82A127.9304.75未失效
    1-9Ti/Al/Mg6.4126.27失效2-92A127.9005.00失效
    1-10Ti/Al/Mg7.0116.00未失效3-12A123.5404.25失效
    1-11Ti/Al/Mg7.1816.25失效3-2Al/Mg3.4764.24临界
    1-12Ti/Al/Mg7.9076.25未失效3-32A126.0795.73失效
    1-13Ti/Al/Mg7.9206.50失效3-4Al/Mg6.3325.74失效
    1-14Ti/Al/Mg8.0376.75失效
    下载: 导出CSV

    表  2  材料主要参数[21-24]

    Table  2.   Key parameters of materials for shock coupling[21-24]

    材质ρ0/(g·cm−3c0/(km·s−1λγ0
    铝合金2.7845.3701.2902.000
    钛合金4.4195.1301.0281.230
    镁合金1.7754.5161.2561.540
    下载: 导出CSV
  • [1] WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131. DOI: 10.1086/106009.
    [2] SCHMIDT R M, HOUSEN K R, BJORKMAN M D, et al. Advanced all-metal orbital debris shield performance at 7 to 17 km/s [J]. International Journal of Impact Engineering, 1995, 17(4): 719–730. DOI: 10.1016/0734-743X(95)99894-W.
    [3] 郭运佳, 文雪忠, 黄洁, 等. 不同填充层材料的空间碎片防护结构性能试验研究 [J]. 航天器环境工程, 2020, 37(6): 589–595. DOI: 10.12126/see.2020.06.009.

    GUO Y J, WEN X Z, HUANG J, et al. Experimental study of shielding performance of protecting structures stuffed with different materials [J]. Spacecraft Environment Engineering, 2020, 37(6): 589–595. DOI: 10.12126/see.2020.06.009.
    [4] 黄鑫, 凌中, 刘宗德, 等. 梯度复合Whipple防护结构的超高速撞击实验 [J]. 爆炸与冲击, 2013, 33(S1): 92–98.

    HUANG X, LING Z, LIU Z D, et al. Hypervelocity impact experiments on new gradient Whipple shield structure [J]. Explosion and Shock Waves, 2013, 33(S1): 92–98.
    [5] HOFMANN D C, HAMILL L, CHRISTIANSEN E, et al. Hypervelocity impact testing of a metallic glass-stuffed Whipple shield [J]. Advanced Engineering Materials, 2015, 17(9): 1313–1322. DOI: 10.1002/adem.201400518.
    [6] PUTZAR R, ZHENG S G, AN J, et al. A stuffed Whipple shield for the Chinese space station [J]. International Journal of Impact Engineering, 2019, 132: 103304. DOI: 10.1016/j.ijimpeng.2019.05.018.
    [7] CHRISTIANSEN E L. Meteoroid/debris shielding [R]. Houston, USA: NASA, 2003.
    [8] CHRISTIANSEN E L, NAGY K, LEAR D M, et al. Space station MMOD shielding [J]. Acta Astronautica, 2009, 65(7/8): 921–929. DOI: 10.1016/j.actaastro.2008.01.046.
    [9] ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
    [10] 张品亮, 宋光明, 龚自正, 等. Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究 [J]. 爆炸与冲击, 2019, 39(12): 125101. DOI: 10.11883/bzycj-2018-0461.

    ZHANG P L, SONG G M, GONG Z Z, et al. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials [J]. Explosion and Shock Waves, 2019, 39(12): 125101. DOI: 10.11883/bzycj-2018-0461.
    [11] HUANG X, LING Z, LIU Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. International Journal of Impact Engineering, 2012, 42: 1–10. DOI: 10.1016/j.ijimpeng.2011.11.001.
    [12] ZHANG P L, XU K B, LI M, et al. Study of the shielding performance of a Whipple shield enhanced by Ti-Al-nylon impedance-graded materials [J]. International Journal of Impact Engineering, 2019, 124: 23–30. DOI: 10.1016/j.ijimpeng.2018.08.005.
    [13] 宋光明, 李明, 武强, 等. 超高速撞击下波阻抗梯度防护结构碎片云特性研究 [J]. 爆炸与冲击, 2021, 41(2): 021405. DOI: 10.11883/bzycj-2020-0299.

    SONG G M, LI M, WU Q, et al. Debris cloud characteristics of graded-impedance shields under hypervelocity impact [J]. Explosion and Shock Waves, 2021, 41(2): 021405. DOI: 10.11883/bzycj-2020-0299.
    [14] LONG L P, PENG Y B, ZHOU W, et al. Study on hypervelocity impact characteristics of Ti/Al/Mg density-graded materials [J]. Metals, 2020, 10(5): 697. DOI: 10.3390/met10050697.
    [15] LONG L P, LIU W S, MA Y Z, et al. Microstructure and diffusion behaviors of the diffusion bonded Mg/Al joint [J]. High Temperature Materials and Processes, 2017, 36(9): 897–903. DOI: 10.1515/htmp-2016-0023.
    [16] PIEKUTOWSKI A J, POORMON K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s [J]. International Journal of Impact Engineering, 2008, 35(12): 1716–1722. DOI: 10.1016/j.ijimpeng.2008.07.023.
    [17] GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17): 2779–2791. DOI: 10.1016/0020-7683(94)00297-A.
    [18] MEYERS M A. 材料的动力学行为 [M]. 张庆明, 刘彦, 黄风雷, 等, 译. 北京: 国防工业出版社, 2006: 83.
    [19] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.
    [20] 经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999.
    [21] MARSH S P. LASL shock hugoniot data [M]. California, USA: University of California, 1980.
    [22] ANDERSON C E Jr, TRUCANO T G, MULLIN S A. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. DOI: 10.1016/0734-743X(90)90024-P.
    [23] MCQUEEN R G, MARSH S P. Equation of state for nineteen metallic elements from shock-wave measurements to two megabars [J]. Journal of Applied Physics, 1960, 31(7): 1253–1269. DOI: 10.1063/1.1735815.
    [24] 徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986.
    [25] CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of Impact Engineering, 2001, 26(1−10): 93–104. DOI: 10.1016/S0734-743X(01)00070-7.
    [26] SCHONBERG W P. Using modified ballistic limit equations in spacecraft risk assessments [J]. Acta Astronautica, 2016, 126: 199–204. DOI: 10.1016/j.actaastro.2016.03.038.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  290
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 录用日期:  2021-12-02
  • 修回日期:  2021-08-10
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回