Yield strength of [100] LiF under shock compression up to 60 GPa
-
摘要: 获取光学窗口自身的高压强度特性是开展材料高压高应变率冲击响应行为精密测量和数据反演的重要基础。利用平板撞击和双屈服面法,通过冲击-卸载、冲击-再加载原位粒子速度剖面精细测量和数据反演,获得了约60 GPa范围内[100]LiF屈服强度特性随冲击压力的变化规律。结果表明:在实验压力范围内,[100]LiF的屈服强度随加载压力的提高而显著提高,压力硬化效应显著;同时,LiF在冲击加载下的屈服强度高于磁驱准等熵加载结果,应变率硬化效应强于热软化效应。采用Huang-Asay模型确定了可描述冲击加载[100]LiF强度特性的本构模型参数,为LiF在强度、相变、层断裂等加窗测量实验中的深入应用和数据准确解读提供了重要支撑。Abstract: The dynamic properties of metals are of importance in shock wave physics, and the time-resolved velocity profile measurement at the interface between the sample and the optical window is often used to decrease the waveform aberrations arising from free-surface reflecting and to obtain the in-situ particle velocity profile in the studied sample. In such cases, the yield strength behavior of the optical window should be taken into account for precise data processing. Among kinds of optical window materials, [100] lithium fluoride (LiF) single crystal is the most widely used window, and little work has been done for its yield strength behavior under dynamic loadings, especially planar shock. In this paper, by using the plate impact and Asay self-consistent technique for high-pressure yield strength, in-situ velocity profiles of the [100] LiF single crystal from shock-release and shock-reshock loading at different pressures were carefully measured by a displacement interferometer system for any reflector (DISAR). Then, the yield strengths under shock compression up to about 60 GPa were educed and found to markedly increase with the increasing of shock pressure, showing a notable pressure-hardening effect. Moreover, by comparing with the results from magnetically-driven isentropic loading in literatures which were the scanty public reports for the high-pressure yield strength of LiF, it was also found that the yield strengths of the [100] LiF under shock compression were higher than those obtained from isentropic loading at the same pressures. This indicates that LiF’s yield strength is more sensitive to strain rate than to temperature up to 60 GPa, and the higher strain rate under shock compression and the dominant strain rate hardening effect results in a higher yield strength. At last, the constitutive model parameters for the [100] LiF were determined to fit to our shock experiments well by using the Huang-Asay equation form. The result above shows that the [100] LiF owns an unignorable flow strength under shock pressures at least to 60 GPa. Moreover, it provides important constitutive parameters for educing the in-situ velocity profiles more accurately in experiments where LiF is used as an optical window, which is essential for researches such as flow strength, phase transition, and shock melting of metal materials.
-
Key words:
- [100] LiF /
- yield strength /
- shock compression /
- Asay self-consistent technique
-
材料高压高应变率冲击响应特性作为冲击波物理的重要研究内容,往往借助于速度剖面测量进行诊断和分析。加窗测量由于可以有效减弱自由面波反射的影响,对于获取波形畸变尽可能小的速度剖面十分重要,在高压强度、冲击相变、熔化等研究中发挥了重要作用[1-3]。这时,样品内原位波剖面反演依赖于光学窗口自身的冲击特性参数,需要分别描述其应力球量(P)和偏量(S)特性的状态方程和本构方程,后者特指描述材料屈服强度特性的函数,如SCG模型[4]、PTW模型[5]等。然而,当前相关研究在进行原位波剖面反演时往往忽略光学窗口的强度特性,而只采用状态方程近似描述其应力状态。这种流体近似处理在数百万大气压的高压区是合理的,但在光学窗口尚具有抗剪切能力的中低压力区将导致数据反演精度降低。以氟化锂(LiF)窗口为例,忽略其强度特性可能导致待测材料屈服强度偏离~10%[6-7],这对于精密实验是不可忽略的影响。另外,笔者在Sn相变特性研究中也发现,LiF窗口屈服强度差异可导致锡相变特征拐点相差~60 m/s。
LiF单晶由于波阻抗适中、光学透明压力范围宽(冲击:~210 GPa[8];准等熵:~800 GPa[9])等优点,是最常用的光学窗口材料。针对LiF冲击特性已有较多报道,但集中于光学特性[10-12]、状态方程[8, 10, 13-14]、弹性波衰减及塑性变形机理[15-17],高压强度特性研究十分缺乏。Ao等[18]对[100]LiF单晶开展了磁驱准等熵加载屈服强度特性研究,发现在5~114 GPa范围内其强度随压力提高而显著提高,最高至5倍常压值。Brown等[19]也对10 GPa以内磁驱加载下[100]LiF的屈服强度进行过实验测量。而材料高压强度具有显著的路径相关性[20-22],目前尚未见到平面冲击加载下LiF强度特性的文献报道。
本文中,利用平面撞击技术对~60 GPa压力内[100]LiF的强度特性开展系统的实验研究,获得平面冲击加载下LiF屈服强度随压力的变化规律,确定可描述冲击加载[100]LiF强度特性的本构模型和参数,比较分析冲击和准等熵2种加载路径下的强度差异,以期为LiF窗口在材料本构关系和冲击相变等精密实验中的应用提供重要支撑。
1. 实验原理和方法
采用双屈服面法[23]开展[100]LiF强度测量,其基本原理见图1。对于冲击加载,完备的双屈服面法需同时获得相近压力下的冲击-卸载、冲击-再加载速度剖面,使样品从预冲击Hugoniot态(B)经过准弹性再加载(
^BE )或准弹性卸载(^BC )后分别进入上、下屈服面。由实测界面速度剖面反演获得样品的声速C-原位粒子速度up曲线(C-up)后(见图1(c)),按下式:{τc+τ0=−34ρ0uC∫uB[C2L(u)−C2B(ui)]duCL(u)卸载τc−τ0=34ρ0uE∫uB′[C2L(u)−C2B(u)]duCL(u)再加载 (1) 对准弹性段进行积分,便得到Hugoniot压力对应的临界屈服强度Y。式(1)中:ρ0为材料初始密度;τc、τ0分别为临界剪应力和预冲击态剪应力,屈服强度Y=2τc;CL和CB分别为沿卸载/再加载路径的拉氏纵波和体波声速;
uB (或uB′ )、uC(或uE)为准弹性卸载或准弹性再加载段起始点和终点的原位粒子速度。[100]LiF单晶在22 GPa以内冲击加载下具有弹塑性双波响应[10]。为了尽可能减小弹塑性双波导致的复杂波系干扰,提高强度测量精度,采用图1(d)所示的“正碰+LiF台阶样品布局+LiF窗口”方式开展冲击-卸载、冲击-再加载速度剖面测量,图中DPS为多普勒探针系统(Doppler pins system)。这时,由于样品/窗口界面无波反射(波阻抗相同),弹性前驱波不会对塑性冲击波及追赶卸载/再加载波造成干扰而引起速度剖面畸变,实测界面速度即为样品原位粒子速度,由台阶样品的实测界面速度剖面和拉氏分析方法即可准确反演沿卸载(再加载)路径的声速(C)-原位粒子速度(up)剖面,而无需考虑波直线弯曲和飞片冲击参数的影响。在LiF为单波响应的更高压力区,也可采用LiF飞片撞击LiF窗口的反碰方式。由于LiF单晶波阻抗低、脆性大,以上述正碰方式为主,在低压区可排除弹塑性双波影响,在单波压力区可以降低弹速要求,从而避免高弹速反碰时LiF飞片出现损伤而导致的界面速度剖面测量失效。
2. 实验基本参数
共开展60 GPa以内6个压力点的平面冲击加载LiF强度测量实验。除p=32.8 GPa的压力点只进行了冲击-卸载实验外,其余压力点均包括冲击-卸载和冲击-再加载实验各1发,基本参数见表1。表1中PC为聚碳酸酯(polycarbonate),OFHC为无氧铜(oxygen free high-conductivity copper);wf为飞片速度,即弹速,hf为飞片厚度,hs为LiF样品厚度;实验S-09中无配对的相近弹速再加载实验, (τc−τ0)以实验S-06和S-08的线性外插值(0.35 GPa)近似;实验S-11和S-12为反碰实验,其余为正碰;压力p取同一组配对冲击-卸载、冲击再加载实验的平均值。实验采用火炮/气炮加载技术,以双台阶样品正碰为主,无氧铜飞片(p<10 GPa时飞片材料为z-切石英)以预定弹速wf撞击由[100]LiF台阶样品和[100]LiF窗口组成的物理靶,飞片、LiF台阶样品直径分别为56和26 mm;第1块LiF样品厚度hs=0(碰靶面),以增大台阶样品厚度差从而提高声速测量精度。反碰实验的飞片和物理靶均为[100]LiF,直径为28 mm。飞片和样品尺寸可确保不小于500 ns的界面速度剖面平台,且卸载/再加载段主体不受边侧稀疏影响。卸载或再加载追赶波则通过飞片背面的低阻抗或高阻抗衬垫分别引入。[100]LiF单晶纯度高于99.99%,常态密度为2.638 g/cm3,抽样超声测量得到的常压纵波声速CL为6.643 km/s、横波声速CB为5.143 km/s。
表 1 主要实验参数及结果Table 1. Main experimental parameters and results实验 飞片/衬垫 wf/(m·s−1) hf/mm hs/mm (τc+τ0)/GPa (τc−τ0)/GPa Y/GPa p/GPa S-01 z-切石英/PC 789 3.0 0, 3.066 0.11 0.18 6.4 S-02 z-切石英/Cu 765 3.0 0, 3.083 0.07 S-03 OFHC/PC 1 262 1.533 0, 2.573 0.29 0.47 14.7 S-04 OFHC/Ta 1 233 1.497 0, 2.604 0.17 S-05 OFHC/PC 1 684 1.507 0, 3.082 0.53 0.97 21.4 S-06 OFHC/Ta 1 735 1.529 0, 3.087 0.44 S-07 OFHC/PC 2 055 1.528 0, 3.013 0.61 1.01 26.4 S-08 OFHC/Ta 1 993 1.520 0, 2.995 0.40 S-09 OFHC/PC 2 394 1.551 0, 3.021 0.84 1.19 32.8 S-11 LiF/PC 4 920 2.633 12.0(窗口) 1.46 1.69 55.9 S-12 LiF/LY12 5 040 2.621 12.0(窗口) 0.23 实验中采用激光干涉测速技术DISAR (displacement interferometer system for any reflector)[24]测量LiF样品/LiF窗口界面速度剖面。由于正碰实验的第1块样品测试面以及反碰实验的测试面为飞片/LiF窗口界面,为了防止碰靶时窗口表面微损伤引起的光学不透明或透明性下降,LiF窗口的碰靶面采用了贴Al箔(厚约8 μm)工艺,以确保飞片/LiF窗口界面速度干涉条纹信号的有效获取。而样品/窗口界面则通过在LiF窗口测试面镀Al膜(厚约1 μm)的方式提高其反光性能,以获取高信噪比的界面速度干涉条纹信号。
3. 实验结果与分析
不同加载压力下测得的LiF双台阶样品/LiF窗口界面(样品厚度hs1(=0), hs2)的典型原位粒子速度剖面如图2~4所示,其中由于窗口折射率效应引起的速度修正采用文献[10]给出的公式进行。最高压力点(55.9 GPa)实验数据由二级轻气炮反碰加载获得,由于弹速较高,速度剖面质量略差,主要是由高弹速发射时脆性LiF飞片内部出现局部非均匀损伤所致。其余几个压力点均采用正碰方式,由于相同压力下正碰加载所需弹速显著降低,实验采用碰靶姿态较优的火炮作为加载平台,速度剖面质量整体较优,LiF样品/窗口界面准弹性卸载/再加载特征信号明显,再加载信号前端未出现飞片局部脱开引起的非预期速度回跳,确保了完备双屈服面法框架下LiF屈服强度的求取。
在图2~4所示的正碰实验中,利用飞片/LiF窗口界面(样品厚度hs1=0)、LiF样品/LiF窗口界面(样品厚度hs2)的实测粒子速度剖面,由下式:
{up=uwC(up)=dhs/(t′4−t4) (2) 可以计算样品沿卸载/再加载路径的声速(C)-粒子速度(up)曲线。式(2)中:dhs=hs2−hs1,
t′4 、t4 分别为厚度为hs2、hs1(=0)的LiF样品界面速度剖面上uw对应的时刻。为了消除飞片碰靶姿态倾斜和测试时间同步性的影响,声速改写为:
C(up)=dhs(t′4−t′1)−(t4−t1)+dhs/Ds=dhs(dt′−dt)+dhs/Ds (3) 式中:Ds为LiF样品的冲击波速度,弹塑性双波响应时为塑性波速度,由实测弹速、飞片和样品冲击Hugoniot关系[10, 25-26]估算;
t′1 、t1 分别为厚度hs2、hs1(=0)的LiF样品界面速度剖面的塑性波起跳时刻,dt′ 、dt 分别为对应的波走时。利用上述分析方法对实测台阶样品(反碰时方法较简单,故略)的界面速度剖面进行数据反演,可获得声速-原位粒子速度曲线(C-up),详见图5(a)。在本文实验压力范围内,全部C-up曲线均有显著的准弹性特征;卸载进入下屈服面后,各曲线体波声速的走势基本一致,与理论近似线(点画线,CB≈C0+2λup)偏离较小。32.8 GPa压力点由于仅有冲击-卸载速度剖面,(τc−τ0)以21.4和26.4 GPa等2个压力点的线性外插值(0.35 GPa)近似,在图5(b)中以空心“○”表示,得到的Y值以空心“□”表示。
整体看来,冲击加载下,[100]LiF单晶在~60 GPa压力范围内仍维持显著的固体强度特性,屈服强度Y随压力提高而显著提高,强度效应不可忽视。另外,在该压力范围内,(τc−τ0)均显著大于零,若仅以卸载实验求取屈服强度而忽略τc与τ0的差异将导致屈服强度Y偏低(Y=2τc >τc+τ0),而本文完备的冲击-卸载、冲击-再加载实验数据获取显著地提升了双屈服面法强度测量的准确性。
将本文冲击加载[100]LiF屈服强度数据与文献[18-19]给出的磁驱准等熵加载数据进行汇总比较,如图6所示。尽管磁驱数据存在一定的分散性,但整体看来,在~60 GPa压力范围内,冲击加载下的[100]LiF屈服强度高于磁驱准等熵加载结果。
材料高压屈服强度与加载条件、材料微结构均密切相关。加载条件方面,应变率、压力、温度是影响材料屈服强度特性的重要因素。从加载应变率来看,文献[18-19]中的磁驱加载平均应变率为1×105~5×105 s−1,低于本文平面冲击加载(加载前沿~108 s−1);相应地,磁驱加载时材料的温升较小,冲击加载的温升较高。从图6给出的2种加载路径下[100]LiF屈服强度差异来看,若排除材料微结构差异,则在本文加载压力范围内,[100]LiF的应变率硬化效应更明显,而温升引入的软化效应相对较弱。
暂不考虑应变率因素,采用下式:
Y−Y0=a1+(εp/b)n[1+G′pG0p(V0/V)1/3−G′TG0ΔT] (4) 给出的改进型SCG本构模型—Huang-Asay模型[22]对本文中获得的冲击加载LiF强度结果进行参数确定,得到的Y-p曲线见图6中的实线。式(4)中:Y0=0.18 GPa, a=0.68 GPa, b=0.142, n=−8.7,
G′p/G0= 0.0545 GPa−1,G′T/G0=8.68×10−4 K−1 ;p、T、V 、εp (=ln(V/V0))等参数由Grüneisen状态方程进行计算,其中C0=5.148 km/s, λ=1.353, γ0=2.0, cV0=1.5 J/(g·K),假设γ0/V0=γ/V。从图6可以看出,方程(4)可较好地对本文的冲击加载LiF强度特性进行描述。但由于未考虑应变率效应,尚无法用同一套参数对磁驱准等熵加载数据进行统一描述。另外,本文在30~60 GPa压力范围内的数据点偏少,由此获得的冲击加载下LiF屈服强度随压力的变化规律还是初步的,更准确地表征有待更多实验数据支撑。此外,后续工作将进一步补充复杂路径实验数据,深入分析压力、应变率、温度对[100]LiF强度特性的影响规律,为适用性更强的高压-高应变率本构模型研制提供支撑。
4. 小 结
利用平板碰撞和双屈服面法,结合原位剖面测量技术,获得了60 GPa以内冲击加载下典型光学窗口材料[100]LiF屈服强度随压力的变化规律,分析了冲击加载和磁驱准等熵加载2种不同路径下的LiF屈服强度特性差异,得到主要结论如下:
(1)在~60 GPa压力范围内,[100]LiF具有明显的抗剪切变形能力,屈服强度随加载压力提高而显著提高,压力硬化效应明显;
(2)相同压力时,冲击加载下的LiF屈服强度高于磁驱准等熵加载,在~60 GPa压力范围内应变率硬化效应占主导,温度软化效应相对较弱;
(3)采用以SCG模型为基础的Huang-Asay本构模型可较好地描述本文冲击加载下的LiF强度特性,并由此确定了模型参数。
LiF在实际应用中往往被作为冲击实验的光学窗口使用。本文结果为LiF窗口在材料本构关系和冲击相变等精密实验中的应用提供了重要支撑,数据反演时通过加入LiF窗口自身的本构模型,可以排除窗口强度效应的影响,提高非透明样品内部的本构响应、相转变等数据的反演精度。后续工作拟补充开展基于阻抗梯度飞片提供的复杂可控路径加载强度实验,进一步比较不同加载路径下[100]LiF的屈服强度特性,深入分析压力、应变率、温度对其强度特性的影响规律,为适用性更强的高压-高应变率本构模型研制提供更丰富的基础实验数据。
-
表 1 主要实验参数及结果
Table 1. Main experimental parameters and results
实验 飞片/衬垫 wf/(m·s−1) hf/mm hs/mm (τc+τ0)/GPa (τc−τ0)/GPa Y/GPa p/GPa S-01 z-切石英/PC 789 3.0 0, 3.066 0.11 0.18 6.4 S-02 z-切石英/Cu 765 3.0 0, 3.083 0.07 S-03 OFHC/PC 1 262 1.533 0, 2.573 0.29 0.47 14.7 S-04 OFHC/Ta 1 233 1.497 0, 2.604 0.17 S-05 OFHC/PC 1 684 1.507 0, 3.082 0.53 0.97 21.4 S-06 OFHC/Ta 1 735 1.529 0, 3.087 0.44 S-07 OFHC/PC 2 055 1.528 0, 3.013 0.61 1.01 26.4 S-08 OFHC/Ta 1 993 1.520 0, 2.995 0.40 S-09 OFHC/PC 2 394 1.551 0, 3.021 0.84 1.19 32.8 S-11 LiF/PC 4 920 2.633 12.0(窗口) 1.46 1.69 55.9 S-12 LiF/LY12 5 040 2.621 12.0(窗口) 0.23 -
[1] EDWARDS R J, ROTHMAN S D, VOGLER T J, et al. Inferring the high-pressure strength of copper by measurement of longitudinal sound speed in a symmetric impact and release experiment [J]. Journal of Applied Physics, 2019, 125(14): 145901. DOI: 10.1063/1.5068730. [2] SMITH R F, EGGERT J H, SACULLA M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth [J]. Physical Review Letters, 2008, 101(6): 065701. DOI: 10.1103/PhysRevLett.101.065701. [3] 李雪梅, 俞宇颖, 谭叶, 等. Bi在固液混合相区的冲击参数测量及声速软化特性 [J]. 物理学报, 2018, 67(4): 046401. DOI: 10.7498/aps.67.20172166.LI X M, YU Y Y, TAN Y, et al. Softening of sound velocity and Hugoniot parameter measurement for shocked bismuth in the solid-liquid mixing pressure zone [J]. Acta Physics Sinica, 2018, 67(4): 046401. DOI: 10.7498/aps.67.20172166. [4] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799. [5] PRESTON D L, TONKS D L, WALLACE D C. Model of plastic deformation for extreme loading conditions [J]. Journal of Applied Physics, 2003, 93(1): 211–220. DOI: 10.1063/1.1524706. [6] AO T, ASAY J R, DAVIS J P, et al. High-pressure quasi-isentropic loading and unloading of interferometer windows on the veloce pulsed power generator [J]. AIP Conference Proceedings, 2007, 955(1): 1157–1160. DOI: 10.1063/1.2832924. [7] ASAY J R, AO T, DAVIS J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression [J]. Journal of Applied Physics, 2008, 103(8): 083514. DOI: 10.1063/1.2902855. [8] DAVIS J P, KNUDSON M D, SHULENBURGER L, et al. Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures [J]. Journal of Applied Physics, 2016, 120(16): 165901. DOI: 10.1063/1.4965869. [9] FRATANDUONO D E, BOEHLY T R, BARRIOS M A, et al. Refractive index of lithium fluoride ramp compressed to 800 GPa [J]. Journal of Applied Physics, 2011, 109(12): 123521. DOI: 10.1063/1.3599884. [10] 李雪梅, 俞宇颖, 张林, 等. [100] LiF的低压冲击响应和1550 nm波长下的窗口速度修正 [J]. 物理学报, 2012, 61(15): 156202. DOI: 10.7498/aps.61.156202.LI X M, YU Y Y, ZHANG L, et al. Elastic-plastic response of shocked [100] LiF and its window correction at 1550 nm wavelength [J]. Acta Physica Sinica, 2012, 61(15): 156202. DOI: 10.7498/aps.61.156202. [11] RIGG P A, KNUDSON M D, SCHARFF R J, et al. Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility [J]. Journal of Applied Physics, 2014, 116(3): 033515. DOI: 10.1063/1.4890714. [12] JENSEN B J, HOLTKAMP D B, RIGG P A. Accuracy limits and window corrections for photon Doppler velocimetry [J]. Journal of Applied Physics, 2007, 101(1): 013523. DOI: 10.1063/1.2407290. [13] LIU Q C, ZHOU X M, ZENG X L, et al. Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression [J]. Journal of Applied Physics, 2015, 117(4): 045901. DOI: 10.1063/1.4906558. [14] SEAGLE C T, DAVIS J P, KNUDSON M D. Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading [J]. Journal of Applied Physics, 2016, 120(16): 165902. DOI: 10.1063/1.4965990. [15] VORTHMAN J E, DUVALL G E. Dislocations in shocked and recovered LiF [J]. Journal of Applied Physics, 1982, 53(5): 3607–3615. DOI: 10.1063/1.331140. [16] MEIR G, CLIFTON R J. Effects of dislocation generation at surfaces and subgrain boundaries on precursor decay in high-purity LiF [J]. Journal of Applied Physics, 1986, 59(1): 124–148. DOI: 10.1063/1.337044. [17] SANO Y, SANO T. Evaluation of the precursor decay anomaly in single crystal lithium fluoride [J]. Journal of Applied Physics, 2009, 106(2): 023534. DOI: 10.1063/1.3159655. [18] AO T, KNUDSON M D, ASAY J R, et al. Strength of lithium fluoride under shockless compression to 114 GPa [J]. Journal of Applied Physics, 2009, 106(10): 103507. DOI: 10.1063/1.3259387. [19] BROWN J L, ALEXANDER C S, ASAY J R, et al. Extracting strength from high pressure ramp-release experiments [J]. Journal of Applied Physics, 2013, 114(22): 223518. DOI: 10.1063/1.4847535. [20] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007: 186−192. [21] VOGLER T J, CHHABILDAS L C. Strength behavior of materials at high pressures [J]. International Journal of Impact Engineering, 2006, 33(1): 812–825. DOI: 10.1016/j.ijimpeng.2006.09.069. [22] HUANG H, ASAY J R. Compressive strength measurements in aluminum for shock compression over the stress range of 4−22 GPa [J]. Journal of Applied Physics, 2005, 98(3): 033524. DOI: 10.1063/1.2001729. [23] ASAY J R, CHHABILDAS L C. Determination of the shear strength of shock compressed 6061-T6 aluminum [M]//MEYERS M A, MURR L E. Shock Waves and High-Strain-Rate Phenomena in Metals. Boston, MA, USA: Springer, 1981: 417−431. DOI: 10.1007/978-1-4613-3219-0_26. [24] WENG J D, TAN H, HU S L, et al. New all-fiber velocimeter [J]. Review of Scientific Instruments, 2005, 76(9): 093301. DOI: 10.1063/1.2008989. [25] 李雪梅, 俞宇颖, 李英华, 等. 冲击压缩下z-切石英的弹性响应特性和折射率 [J]. 物理学报, 2010, 59(4): 2691–2696. DOI: 10.7498/aps.59.2691.LI X M, YU Y Y, LI Y H, et al. Elastic properties and refractive index of shocked z-cut quartz [J]. Acta Physica Sinica, 2010, 59(4): 2691–2696. DOI: 10.7498/aps.59.2691. [26] MITCHELL A C, NELLIS W J. Shock compression of aluminum, copper, and tantalum [J]. Journal of Applied Physics, 1981, 52(5): 3363–3374. DOI: 10.1063/1.329160. -