[100]LiF单晶在60 GPa以内冲击加载下的高压屈服强度特性

谭叶 李雪梅 俞宇颖 南小龙 甘元超 叶想平 胡建波 王倩男

谭叶, 李雪梅, 俞宇颖, 南小龙, 甘元超, 叶想平, 胡建波, 王倩男. [100]LiF单晶在60 GPa以内冲击加载下的高压屈服强度特性[J]. 爆炸与冲击, 2022, 42(4): 044102. doi: 10.11883/bzycj-2021-0242
引用本文: 谭叶, 李雪梅, 俞宇颖, 南小龙, 甘元超, 叶想平, 胡建波, 王倩男. [100]LiF单晶在60 GPa以内冲击加载下的高压屈服强度特性[J]. 爆炸与冲击, 2022, 42(4): 044102. doi: 10.11883/bzycj-2021-0242
TAN Ye, LI Xuemei, YU Yuying, NAN Xiaolong, GAN Yuanchao, YE Xiangping, HU Jianbo, WANG Qiannan. Yield strength of [100] LiF under shock compression up to 60 GPa[J]. Explosion And Shock Waves, 2022, 42(4): 044102. doi: 10.11883/bzycj-2021-0242
Citation: TAN Ye, LI Xuemei, YU Yuying, NAN Xiaolong, GAN Yuanchao, YE Xiangping, HU Jianbo, WANG Qiannan. Yield strength of [100] LiF under shock compression up to 60 GPa[J]. Explosion And Shock Waves, 2022, 42(4): 044102. doi: 10.11883/bzycj-2021-0242

[100]LiF单晶在60 GPa以内冲击加载下的高压屈服强度特性

doi: 10.11883/bzycj-2021-0242
基金项目: 国家自然科学基金(11772312, 11802285);冲击波物理与爆轰物理重点实验室基金(6142A0302010317)
详细信息
    作者简介:

    谭 叶(1986- ),男,硕士,副研究员,typppku@163.com

    通讯作者:

    李雪梅(1975- ),女,硕士,副研究员,lixuem@caep.cn

  • 中图分类号: O389

Yield strength of [100] LiF under shock compression up to 60 GPa

  • 摘要: 获取光学窗口自身的高压强度特性是开展材料高压高应变率冲击响应行为精密测量和数据反演的重要基础。利用平板撞击和双屈服面法,通过冲击-卸载、冲击-再加载原位粒子速度剖面精细测量和数据反演,获得了约60 GPa范围内[100]LiF屈服强度特性随冲击压力的变化规律。结果表明:在实验压力范围内,[100]LiF的屈服强度随加载压力的提高而显著提高,压力硬化效应显著;同时,LiF在冲击加载下的屈服强度高于磁驱准等熵加载结果,应变率硬化效应强于热软化效应。采用Huang-Asay模型确定了可描述冲击加载[100]LiF强度特性的本构模型参数,为LiF在强度、相变、层断裂等加窗测量实验中的深入应用和数据准确解读提供了重要支撑。
  • 图  1  冲击加载下双屈服面法强度测量基本原理

    Figure  1.  Schematic illumination for the Asay self-consistent method of strength determination

    图  2  典型的LiF样品卸载、再加载界面速度剖面测量结果(p=6.4 GPa,z-切石英飞片)

    Figure  2.  Typical release/reshock velocity profiles measured at the sample-window interfaces for [100] LiF (p=6.4 GPa, z-quartz flyer)

    图  3  典型的LiF样品卸载、再加载界面速度剖面测量结果 (p=26.4 GPa, Cu 飞片)

    Figure  3.  Typical release/reshock velocity profiles measured at the sample-window interfaces for [100] LiF (p=26.4 GPa, Cu flyer)

    图  4  典型的LiF样品卸载、再加载界面速度剖面测量结果(p=55.9 GPa, LiF 飞片)

    Figure  4.  Typical release/reshock velocity profiles measured at the sample-window interface for [100] LiF (p=55.9 GPa, LiF flyer)

    图  5  数据反演获得的[100]LiF声速-原位粒子速度曲线及屈服强度-压力关系

    Figure  5.  Sound speed-in-situ particle velocity profiles and pressure dependence of strengths for [100] LiF educed from experimental data

    图  6  不同加载路径下[100]LiF的屈服强度比较

    Figure  6.  Comparison of yield strengths between planar shock and isentropic loading for [100] LiF

    表  1  主要实验参数及结果

    Table  1.   Main experimental parameters and results

    实验飞片/衬垫wf/(m·s−1hf/mmhs/mmτc+τ0)/GPaτcτ0)/GPaY/GPap/GPa
    S-01z-切石英/PC7893.00, 3.0660.110.186.4
    S-02z-切石英/Cu7653.00, 3.0830.07
    S-03OFHC/PC1 2621.5330, 2.5730.290.4714.7
    S-04OFHC/Ta1 2331.4970, 2.6040.17
    S-05OFHC/PC1 6841.5070, 3.0820.530.9721.4
    S-06OFHC/Ta1 7351.5290, 3.0870.44
    S-07OFHC/PC2 0551.5280, 3.0130.611.0126.4
    S-08OFHC/Ta1 9931.5200, 2.9950.40
    S-09OFHC/PC2 3941.5510, 3.0210.841.1932.8
    S-11LiF/PC4 9202.63312.0(窗口)1.461.6955.9
    S-12LiF/LY125 0402.62112.0(窗口)0.23
    下载: 导出CSV
  • [1] EDWARDS R J, ROTHMAN S D, VOGLER T J, et al. Inferring the high-pressure strength of copper by measurement of longitudinal sound speed in a symmetric impact and release experiment [J]. Journal of Applied Physics, 2019, 125(14): 145901. DOI: 10.1063/1.5068730.
    [2] SMITH R F, EGGERT J H, SACULLA M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth [J]. Physical Review Letters, 2008, 101(6): 065701. DOI: 10.1103/PhysRevLett.101.065701.
    [3] 李雪梅, 俞宇颖, 谭叶, 等. Bi在固液混合相区的冲击参数测量及声速软化特性 [J]. 物理学报, 2018, 67(4): 046401. DOI: 10.7498/aps.67.20172166.

    LI X M, YU Y Y, TAN Y, et al. Softening of sound velocity and Hugoniot parameter measurement for shocked bismuth in the solid-liquid mixing pressure zone [J]. Acta Physics Sinica, 2018, 67(4): 046401. DOI: 10.7498/aps.67.20172166.
    [4] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
    [5] PRESTON D L, TONKS D L, WALLACE D C. Model of plastic deformation for extreme loading conditions [J]. Journal of Applied Physics, 2003, 93(1): 211–220. DOI: 10.1063/1.1524706.
    [6] AO T, ASAY J R, DAVIS J P, et al. High-pressure quasi-isentropic loading and unloading of interferometer windows on the veloce pulsed power generator [J]. AIP Conference Proceedings, 2007, 955(1): 1157–1160. DOI: 10.1063/1.2832924.
    [7] ASAY J R, AO T, DAVIS J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression [J]. Journal of Applied Physics, 2008, 103(8): 083514. DOI: 10.1063/1.2902855.
    [8] DAVIS J P, KNUDSON M D, SHULENBURGER L, et al. Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures [J]. Journal of Applied Physics, 2016, 120(16): 165901. DOI: 10.1063/1.4965869.
    [9] FRATANDUONO D E, BOEHLY T R, BARRIOS M A, et al. Refractive index of lithium fluoride ramp compressed to 800 GPa [J]. Journal of Applied Physics, 2011, 109(12): 123521. DOI: 10.1063/1.3599884.
    [10] 李雪梅, 俞宇颖, 张林, 等. [100] LiF的低压冲击响应和1550 nm波长下的窗口速度修正 [J]. 物理学报, 2012, 61(15): 156202. DOI: 10.7498/aps.61.156202.

    LI X M, YU Y Y, ZHANG L, et al. Elastic-plastic response of shocked [100] LiF and its window correction at 1550 nm wavelength [J]. Acta Physica Sinica, 2012, 61(15): 156202. DOI: 10.7498/aps.61.156202.
    [11] RIGG P A, KNUDSON M D, SCHARFF R J, et al. Determining the refractive index of shocked [100] lithium fluoride to the limit of transmissibility [J]. Journal of Applied Physics, 2014, 116(3): 033515. DOI: 10.1063/1.4890714.
    [12] JENSEN B J, HOLTKAMP D B, RIGG P A. Accuracy limits and window corrections for photon Doppler velocimetry [J]. Journal of Applied Physics, 2007, 101(1): 013523. DOI: 10.1063/1.2407290.
    [13] LIU Q C, ZHOU X M, ZENG X L, et al. Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression [J]. Journal of Applied Physics, 2015, 117(4): 045901. DOI: 10.1063/1.4906558.
    [14] SEAGLE C T, DAVIS J P, KNUDSON M D. Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading [J]. Journal of Applied Physics, 2016, 120(16): 165902. DOI: 10.1063/1.4965990.
    [15] VORTHMAN J E, DUVALL G E. Dislocations in shocked and recovered LiF [J]. Journal of Applied Physics, 1982, 53(5): 3607–3615. DOI: 10.1063/1.331140.
    [16] MEIR G, CLIFTON R J. Effects of dislocation generation at surfaces and subgrain boundaries on precursor decay in high-purity LiF [J]. Journal of Applied Physics, 1986, 59(1): 124–148. DOI: 10.1063/1.337044.
    [17] SANO Y, SANO T. Evaluation of the precursor decay anomaly in single crystal lithium fluoride [J]. Journal of Applied Physics, 2009, 106(2): 023534. DOI: 10.1063/1.3159655.
    [18] AO T, KNUDSON M D, ASAY J R, et al. Strength of lithium fluoride under shockless compression to 114 GPa [J]. Journal of Applied Physics, 2009, 106(10): 103507. DOI: 10.1063/1.3259387.
    [19] BROWN J L, ALEXANDER C S, ASAY J R, et al. Extracting strength from high pressure ramp-release experiments [J]. Journal of Applied Physics, 2013, 114(22): 223518. DOI: 10.1063/1.4847535.
    [20] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007: 186−192.
    [21] VOGLER T J, CHHABILDAS L C. Strength behavior of materials at high pressures [J]. International Journal of Impact Engineering, 2006, 33(1): 812–825. DOI: 10.1016/j.ijimpeng.2006.09.069.
    [22] HUANG H, ASAY J R. Compressive strength measurements in aluminum for shock compression over the stress range of 4−22 GPa [J]. Journal of Applied Physics, 2005, 98(3): 033524. DOI: 10.1063/1.2001729.
    [23] ASAY J R, CHHABILDAS L C. Determination of the shear strength of shock compressed 6061-T6 aluminum [M]//MEYERS M A, MURR L E. Shock Waves and High-Strain-Rate Phenomena in Metals. Boston, MA, USA: Springer, 1981: 417−431. DOI: 10.1007/978-1-4613-3219-0_26.
    [24] WENG J D, TAN H, HU S L, et al. New all-fiber velocimeter [J]. Review of Scientific Instruments, 2005, 76(9): 093301. DOI: 10.1063/1.2008989.
    [25] 李雪梅, 俞宇颖, 李英华, 等. 冲击压缩下z-切石英的弹性响应特性和折射率 [J]. 物理学报, 2010, 59(4): 2691–2696. DOI: 10.7498/aps.59.2691.

    LI X M, YU Y Y, LI Y H, et al. Elastic properties and refractive index of shocked z-cut quartz [J]. Acta Physica Sinica, 2010, 59(4): 2691–2696. DOI: 10.7498/aps.59.2691.
    [26] MITCHELL A C, NELLIS W J. Shock compression of aluminum, copper, and tantalum [J]. Journal of Applied Physics, 1981, 52(5): 3363–3374. DOI: 10.1063/1.329160.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  118
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2022-02-25
  • 网络出版日期:  2022-04-11
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回