应力调整对石英玻璃珠低速冲击破碎行为的影响

宋一平 苗春贺 单俊芳 王鹏飞 徐松林

宋一平, 苗春贺, 单俊芳, 王鹏飞, 徐松林. 应力调整对石英玻璃珠低速冲击破碎行为的影响[J]. 爆炸与冲击, 2022, 42(7): 073103. doi: 10.11883/bzycj-2021-0244
引用本文: 宋一平, 苗春贺, 单俊芳, 王鹏飞, 徐松林. 应力调整对石英玻璃珠低速冲击破碎行为的影响[J]. 爆炸与冲击, 2022, 42(7): 073103. doi: 10.11883/bzycj-2021-0244
SONG Yiping, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. Effect of stress-state adjustment on fragmentation behavior of quartz glass beads subjected to low-velocity impact[J]. Explosion And Shock Waves, 2022, 42(7): 073103. doi: 10.11883/bzycj-2021-0244
Citation: SONG Yiping, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. Effect of stress-state adjustment on fragmentation behavior of quartz glass beads subjected to low-velocity impact[J]. Explosion And Shock Waves, 2022, 42(7): 073103. doi: 10.11883/bzycj-2021-0244

应力调整对石英玻璃珠低速冲击破碎行为的影响

doi: 10.11883/bzycj-2021-0244
基金项目: 国家自然科学基金(11672286,11872361,11602267);中央高校基本科研业务费专项资金(WK2480000008);高压物理与地震科技联合实验室室开放基金(2019HPPES01)
详细信息
    作者简介:

    宋一平(1997- ),女,硕士,syiping@mail.ustc.edu.cn

    通讯作者:

    徐松林(1971- ),男,博士,研究员,博士生导师,slxu99@ustc.edu.cn

  • 中图分类号: O347

Effect of stress-state adjustment on fragmentation behavior of quartz glass beads subjected to low-velocity impact

  • 摘要: 结合高速摄影技术,应用SHPB加载装置,分别使用钢制、铝制和有机玻璃制3种透射杆,对直径约7.90、11.80、15.61 mm 3种尺寸的石英玻璃珠进行了低速冲击实验。根据不同透射杆条件下的玻璃珠破碎过程中的载荷-位移曲线,结合有限元软件计算玻璃珠在冲击作用下载荷的变化情况以及实验过程中玻璃珠的应变,探讨了应力调整对玻璃珠破碎过程的影响。结果表明:相同冲击条件作用下,改变透射杆的材料,会改变玻璃珠破碎过程中的载荷分布,即透射端边界波阻抗的改变会导致反射波发生改变,从而导致玻璃珠内部载荷发生变化;透射杆为铝材和有机玻璃材质时,玻璃珠在破碎过程中的载荷明显下降,在加载过程中伴随着垫块的变形,玻璃珠内部的应力调整时间变长;透射杆为钢杆时,玻璃珠的应变主要表现为两端最大,越靠近中间应变越小,对于透射杆为铝杆和有机玻璃杆的玻璃珠,透射端局部出现了卸载行为。采用有机玻璃透射杆之后,局部应力和变形降低的结果使得玻璃珠在经受较大的变形之后发生破碎,表明玻璃珠的破碎行为由局部变形和局部变形梯度共同控制。
  • 图  1  石英玻璃珠载荷-位移关系与破碎形态

    Figure  1.  Force-displacement curves and breakage patterns of quartz glass spheres

    图  2  改进的SHPB实验装置

    Figure  2.  Schematic diagram of a modified split Hopkinson pressure bar device

    图  3  直径7.90 mm玻璃珠的透射载荷-位移关系曲线

    Figure  3.  Transmitted load-displacement curves of glass sphere with diameter 7.90 mm

    图  4  直径7.90 mm玻璃珠的压缩过程

    Figure  4.  Compression processes of glass spheres with diameter 7.90 mm

    图  5  直径15.61 mm玻璃珠的透射载荷-位移关系曲线

    Figure  5.  Transmitted load-displacement curves of glass sphere with diameter 15.61 mm

    图  6  直径15.61 mm玻璃珠的压缩过程

    Figure  6.  Compression processes of glass spheres with diameter 15.61 mm

    图  7  玻璃珠的计算模型和有限元模型

    Figure  7.  Calculation model and finite element method model of glass sphere

    图  8  直径12.00 mm玻璃珠内部不同截面载荷-时间曲线

    Figure  8.  Load-time curves of different cross sections of glass beads with diameter 12.00 mm

    图  9  直径12.00 mm玻璃珠内部不同截面载荷-位置关系

    Figure  9.  Load-position relations of different cross sections of glass beads with diameter 12.00 mm

    图  10  直径12.00 mm玻璃珠内部剪应力分布

    Figure  10.  Shear stress distributions of glass beads with diameter 12.00 mm

    图  11  结合高速摄影计算的直径7.90 mm玻璃珠中应变演化

    Figure  11.  Strain evolutions in glass sphere with diameter 7.90 mm based on the high-speed photography

    图  12  基于高速摄影计算的直径15.61 mm玻璃珠中应变演化

    Figure  12.  Strain evolutions in glass spheres with diameter 15.61 mm based on the high-speed photography

    图  13  破碎阵面

    Figure  13.  Failure wave fronts

    图  14  基于剪切扩散理论计算的直径7.90 mm玻璃珠中应变演化

    Figure  14.  Strain evolutions in glass spheres with diameter 7.90 mm based on the shear activation diffusion theory

    图  15  基于剪切扩散理论计算的直径15.61 mm玻璃珠中应变演化

    Figure  15.  Strain evolution in glass sphere with diameter 15.61 mm based on shear activation diffusion theory

    表  1  玻璃珠两端载荷差统计

    Table  1.   Statistics of load differences between two ends of glass sphere

    直径/mm透射杆材料平均应变率/s−1两端载荷差/%
    7.907003.7~4.1
    5006.1~8.2
    有机玻璃45012.8~25.5
    11.806007.9~8.3
    450 8.0~15.8
    有机玻璃30062.9~77.8
    15.614505.1~9.1
    40048.3~54.1
    有机玻璃30074.3~82.7
    下载: 导出CSV

    表  2  材料参数

    Table  2.   Parameters of materials

    材料密度/(kg·m−3)声速/(m·s−1)弹性模量/GPa泊松比
    7 8005 100203.00.30
    2 7005 090 70.00.25
    有机玻璃1 8001 270 2.90.32
    石英玻璃珠2 5306 027 89.00.24
    下载: 导出CSV
  • [1] 徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.

    XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 030101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
    [2] HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. DOI: 10.1016/j.mechmat.2013.08.002.
    [3] LIU C H, NAGEL S R, SCHECTER D A, et al. Force fluctuations in bead packs [J]. Science, 1995, 269(5223): 513–515. DOI: 10.1126/science.269.5223.513.
    [4] MAJMUDAR T S, BEHRINGER R P. Contact force measurements and stress-induced anisotropy in granular materials [J]. Nature, 2005, 435(7045): 1079–1082. DOI: 10.1038/nature03805.
    [5] GOLDENBERG C, GOLDHIRSCH I. Force chains, microelasticity, and macroelasticity [J]. Physical Review Letters, 2002, 89(8): 084302. DOI: 10.1103/physrevlett.89.084302.
    [6] HARTLEY R R, BEHRINGER R P. Logarithmic rate dependence of force networks in sheared granular materials [J]. Nature, 2003, 421(6926): 928–931. DOI: 10.1038/nature01394.
    [7] HUANG J Y, LU L, FAN D, et al. Heterogeneity in deformation of granular ceramics under dynamic loading [J]. Scripta Materialia, 2016, 111: 114–118. DOI: 10.1016/j.scriptamat.2015.08.028.
    [8] HUANG J Y, XU S L, YI H S, et al. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268: 86–94. DOI: 10.1016/j.powtec.2014.08.037.
    [9] 易洪昇, 徐松林, 单俊芳, 等. 不同加载速度下脆性颗粒的破坏特性 [J]. 爆炸与冲击, 2017, 37(5): 913–922. DOI: 10.11883/1001-1455(2017)05-0913-10.

    YI H S, XU S L, SHAN J F, et al. Fracture characteristics of brittle particles at different loading velocities [J]. Explosion and Shock Waves, 2017, 37(5): 913–922. DOI: 10.11883/1001-1455(2017)05-0913-10.
    [10] SHAN J F, XU S L, LIU Y G, et al. Dynamic breakage of glass sphere subjected to impact loading [J]. Powder Technology, 2018, 330: 317–329. DOI: 10.1016/j.powtec.2018.02.009.
    [11] MCDOWELL G R, AMON A. The application of Weibull statistics to the fracture of soil particles [J]. Soils and Foundations, 2000, 40(5): 133–141. DOI: 10.3208/sandf.40.5_133.
    [12] CHEONG Y S, SALMAN A D, HOUNSLOW M J. Effect of impact angle and velocity on the fragment size distribution of glass spheres [J]. Powder Technology, 2003, 138(2/3): 189–200. DOI: 10.1016/j.powtec.2003.09.010.
    [13] SALMAN A D, REYNOLDS G K, FU J S, et al. Descriptive classification of the impact failure modes of spherical particles [J]. Powder Technology, 2004, 143/144: 19–30. DOI: 10.1016/j.powtec.2004.04.005.
    [14] 方继松, 王珠, 熊迅, 等. 石英玻璃球撞击刚性壁的破碎过程 [J]. 高压物理学报, 2020, 34(1): 014101. DOI: 10.11858/gywlxb.20190764.

    FANG J S, WANG Z, XIONG X, et al. Fragmentation process of quartz glass spheres impacting rigid wall [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 014101. DOI: 10.11858/gywlxb.20190764.
    [15] POTAPOV A V, CAMPBELL C S. The two mechanisms of particle impact breakage and the velocity effect [J]. Powder Technology, 1997, 93(1): 13–21. DOI: 10.1016/S0032-5910(97)03242-7.
    [16] 简世豪, 苗春贺, 张磊, 等. 双石英玻璃珠的低速冲击破碎行为 [J]. 高压物理学报, 2021, 35(2): 024202. DOI: 10.11858/gywlxb.20200629.

    JIAN S H, MIAO C H, ZHANG L, et al. Fragmentation of double quartz glass spheres subjected to lower-velocity impact [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024202. DOI: 10.11858/gywlxb.20200629.
    [17] SHIPWAY P H, HUTCHINGS I M. Fracture of brittle spheres under compression and impact loading. Ⅰ. Elastic stress distributions [J]. Philosophical Magazine A, 1993, 67(6): 1389–1404. DOI: 10.1080/01418619308225362.
    [18] CHAU K T, WEI X X, WONG R H C, et al. Fragmentation of brittle spheres under static and dynamic compressions: experiments and analyses [J]. Mechanics of Materials, 2000, 32(9): 543–554. DOI: 10.1016/S0167-6636(00)00026-0.
    [19] 黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究 [D]. 合肥: 中国科学技术大学, 2016: 82–84.

    HUANG J Y. Dynamic multiscale deformation behavior and particle-breakage properties of granular materials subjected to impact loading [D]. Hefei: University of Science and Technology of China, 2016: 82–84.
    [20] 苗春贺, 陈丽娜, 单俊芳, 等. 水泥砂浆抗弹性能研究 [J]. 高压物理学报, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.

    MIAO C H, CHEN L N, SHAN J F, et al. Research on the ballistic performance of cement mortar [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.
    [21] FENG R. Formation and propagation of failure in shocked glasses [J]. Journal of Applied Physics, 2000, 87(4): 1693–1700. DOI: 10.1063/1.372079.
    [22] JIANG H B, XU S L, SHAN J F, et al. Dynamic breakage of porous hexagonal boron nitride ceramics subjected to impact loading [J]. Powder Technology, 2019, 353: 359–371. DOI: 10.1016/j.powtec.2019.05.028.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  110
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 录用日期:  2022-06-01
  • 修回日期:  2021-08-20
  • 网络出版日期:  2022-06-07
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回