基于UCM模型的B炸药慢烤泄压结构的作用分析

王琦 智小琦 肖游 郝春杰

王琦, 智小琦, 肖游, 郝春杰. 基于UCM模型的B炸药慢烤泄压结构的作用分析[J]. 爆炸与冲击, 2022, 42(4): 042301. doi: 10.11883/bzycj-2021-0253
引用本文: 王琦, 智小琦, 肖游, 郝春杰. 基于UCM模型的B炸药慢烤泄压结构的作用分析[J]. 爆炸与冲击, 2022, 42(4): 042301. doi: 10.11883/bzycj-2021-0253
WANG Qi, ZHI Xiaoqi, XIAO You, HAO Chunjie. Analysis of the effect of a venting structure on slow cookoff of Comp-B based on a universal cookoff model[J]. Explosion And Shock Waves, 2022, 42(4): 042301. doi: 10.11883/bzycj-2021-0253
Citation: WANG Qi, ZHI Xiaoqi, XIAO You, HAO Chunjie. Analysis of the effect of a venting structure on slow cookoff of Comp-B based on a universal cookoff model[J]. Explosion And Shock Waves, 2022, 42(4): 042301. doi: 10.11883/bzycj-2021-0253

基于UCM模型的B炸药慢烤泄压结构的作用分析

doi: 10.11883/bzycj-2021-0253
详细信息
    作者简介:

    王 琦(1997- ),男,硕士研究生,wqwj1997@qq.com

    通讯作者:

    智小琦(1963- ),女,博士,教授,zxq4060@sina.com

  • 中图分类号: O381

Analysis of the effect of a venting structure on slow cookoff of Comp-B based on a universal cookoff model

  • 摘要: 为了探究热刺激作用下泄压结构对熔铸炸药点火时间及点火前内部物理场变化的影响,设计了有/无泄压结构烤燃弹的内部多点测温慢烤对比试验。基于炸药通用烤燃模型(universal cookoff model, UCM),建立了炸药熔化后受浮升力驱动流动,反应速率随压力、反应进程等变化的B炸药烤燃计算模型,对有/无泄压结构烤燃弹的炸药在升温过程中的温度场及内部压力变化等情况进行了数值模拟,并与试验结果进行比较。结果表明:慢烤条件下,烤燃弹内部压力呈先缓后急上升趋势;有泄压结构烤燃弹在结构作用前的压力变化趋势与无泄压结构的一致,泄压结构的作用会使炸药自热反应速率骤然降低,炸药内部温度下降,自热反应速率降低和产物气泡驱动的对流共同导致了点火时间的延后;由于对流的作用,炸药点火点都在弹体顶部区域。
  • 图  1  试验弹体

    Figure  1.  Tested ammunitions

    图  2  慢烤燃试验装置

    Figure  2.  Slow cookoff test setup

    图  3  烤燃弹结构及测温点位置

    Figure  3.  Ammunition structure and locations of the temperature measurement points

    图  4  响应后破片与弹体

    Figure  4.  Fragments and ammunition after response

    图  5  两发烤燃弹慢烤过程中的测点温度-时间曲线

    Figure  5.  Temperature-time curves of the two cookoff ammunitions during slow cookoff

    图  6  网格模型

    Figure  6.  Grid model

    图  7  模拟所得无泄压孔烤燃弹测点温度曲线及弹体内部压力曲线

    Figure  7.  Simulated temperature and pressure curves of the ammunition without a venting structure

    图  8  无泄压孔烤燃弹的温度云图

    Figure  8.  Temperature contour of the ammunition without a venting structure at ignition time

    图  9  模拟所得带泄压孔烤燃弹测点温度曲线及弹体内部压力曲线

    Figure  9.  Simulated temperature curves at different measured points of the ammunition with a venting structure and its internal pressure curve

    图  10  泄压孔冲开及点火时刻的温度云图

    Figure  10.  Temperature contours of the ammunition with a venting structure when it works and at ignition

    表  1  不同尺寸的网格及计算结果

    Table  1.   Calculation results with meshes of different sizes

    方案网格主要
    尺寸/mm
    网格单元数响应时刻外壁
    温度/℃
    响应时刻内部
    压力/MPa
    10.6116 144173.265.01
    20.5163 800173.244.96
    30.4221 680173.224.84
    下载: 导出CSV
  • [1] 黄亨建, 陈科全, 陈红霞, 等. 国外钝感弹药危害缓解设计的原理和方法 [J]. 含能材料, 2019, 27(11): 974–980. DOI: 10.11943/CJEM2019155.

    HUANG H J, CHEN K Q, CHEN H X, et al. Principles and methods for insensitive munitions hazard mitigation design [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 974–980. DOI: 10.11943/CJEM2019155.
    [2] MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives: UCRL-84986 [R]. California, USA: Lawrence Livermore National Laboratory, 1981.
    [3] ZERKLE D K. Composition B decomposition and ignition model [C]//Proceedings of the 13th International Detonation Symposium. Norfolk, USA, 2006: 771−777.
    [4] HOBBS M L, KANESHIGE M J, ERIKSON W W, et al. Cookoff modeling of a melt cast explosive (Comp-B) [J]. Combustion and Flame, 2020, 215: 36–50. DOI: 10.1016/J.COMBUSTFLAME.2020.01.022.
    [5] GRAHAM K J. Mitigation of fuel fire threat to large rocket motors by venting [C]//Proceedings of the IMEMTS Symposium. Munich, Germany, 2010.
    [6] 徐瑞, 智小琦, 王帅. 缓释结构对B炸药烤燃响应烈度的影响 [J]. 高压物理学报, 2021, 35(3): 035201. DOI: 10.11858/gywlxb.20200657.

    XU R, ZHI X Q, WANG S. Influence of venting structure on the cook-off response intensity of composition B [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 035201. DOI: 10.11858/gywlxb.20200657.
    [7] MOONEY M. The viscosity of a concentrated suspension of spherical particles [J]. Journal of Colloid Science, 1951, 6(2): 162–170. DOI: 10.1016/0095-8522(51)90036-0.
    [8] DAVIS S M, ZERKLE D K, SMILOWITZ L B, et al. Integrated rheology model: explosive composition B-3 [J]. Journal of Energetic Materials, 2018, 36(4): 398–411. DOI: 10.1080/07370652.2018.1451573.
    [9] 周捷, 智小琦, 王帅, 等. B炸药慢速烤燃过程的流变特性 [J]. 爆炸与冲击, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.

    ZHOU J, ZHI X Q, WANG S, et al. Rheological properties of composition B in slow cook-off process [J]. Explosion and Shock Waves, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.
    [10] SARANGAPANI R, RAMAVAT V, REDDY S, et al. Rheology studies of NTO-TNT based melt-cast dispersions and influence of particle-dispersant interactions [J]. Powder Technology, 2015, 273: 118–124. DOI: 10.1016/J.POWTEC.2014.12.013.
    [11] 周建兴, 刘瑞祥, 陈立亮, 等. 凝固过程数值模拟中的潜热处理方法 [J]. 铸造, 2001, 50(7): 404–407. DOI: 10.3321/j.issn:1001-4977.2001.07.010.

    ZHOU J X, LIU R X, CHEN L L, et al. The approaches of latent heat treatment [J]. Foundy, 2001, 50(7): 404–407. DOI: 10.3321/j.issn:1001-4977.2001.07.010.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  228
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-10-22
  • 网络出版日期:  2022-02-12
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回