传爆药静态压缩力学性能及损伤特性研究

肖向东 肖有才 洪志雄 熊言义 赵慧平 王泽宇 王志军

肖向东, 肖有才, 洪志雄, 熊言义, 赵慧平, 王泽宇, 王志军. 传爆药静态压缩力学性能及损伤特性研究[J]. 爆炸与冲击, 2022, 42(4): 042302. doi: 10.11883/bzycj-2021-0257
引用本文: 肖向东, 肖有才, 洪志雄, 熊言义, 赵慧平, 王泽宇, 王志军. 传爆药静态压缩力学性能及损伤特性研究[J]. 爆炸与冲击, 2022, 42(4): 042302. doi: 10.11883/bzycj-2021-0257
XIAO Xiangdong, XIAO Youcai, HONG Zhixiong, XIONG Yanyi, ZHAO Huiping, WANG Zeyu, WANG Zhijun. Study on mechanical properties and damage characteristics of booster explosives under static compression[J]. Explosion And Shock Waves, 2022, 42(4): 042302. doi: 10.11883/bzycj-2021-0257
Citation: XIAO Xiangdong, XIAO Youcai, HONG Zhixiong, XIONG Yanyi, ZHAO Huiping, WANG Zeyu, WANG Zhijun. Study on mechanical properties and damage characteristics of booster explosives under static compression[J]. Explosion And Shock Waves, 2022, 42(4): 042302. doi: 10.11883/bzycj-2021-0257

传爆药静态压缩力学性能及损伤特性研究

doi: 10.11883/bzycj-2021-0257
基金项目: 国家自然科学基金(11802273);山西省青年科学基金(201901D211279)
详细信息
    作者简介:

    肖向东(1994- ),男,硕士,xxiangdong0@163.com

    通讯作者:

    肖有才(1988- ),男,博士,副教授,xiaoyoucai@nuc.edu.cn

  • 中图分类号: O347.3

Study on mechanical properties and damage characteristics of booster explosives under static compression

  • 摘要: 为研究聚黑-14C(JH-14C)传爆药静态压缩力学性能及损伤特性,开展准静态压缩实验,获得了不同应变率下的应力-应变曲线,建立了描述不同应变率下JH-14C力学行为的非线性本构模型;利用扫描电镜(SEM)对回收试样进行细微形貌观测,获得了准静态压缩JH-14C损伤特性的表征。结果表明:JH-14C压缩强度随应变率的升高而提高;实验与计算结果对照验证了本构模型的有效性;准静态压缩实验中,JH-14C主要损伤模式为脱湿和穿晶断裂。
  • 图  1  JH-14C的细观形貌

    Figure  1.  Micrographs of JH-14C

    图  2  应力-应变关系和试件变形过程

    Figure  2.  Stress-strain relationship and the corresponding specimen deformation process

    图  3  不同应变率下JH-14C、PBX9501[14]、X0242[13]的准静态应力-应变曲线

    Figure  3.  Quasi-static stress-strain curves of JH-14C, PBX9501[14], X0242[13] at different strain rates

    图  4  理论与实验的准静态压缩应力-应变曲线比较

    Figure  4.  Comparisons between theory and experiment quasi-static stress-strain curves

    图  5  试样加载前细观形貌

    Figure  5.  Micrographs of the specimens before loading

    图  6  PBX9501的细观形貌[4]

    Figure  6.  Micrographs of PBX9501[4]

    图  7  JH-14C试样加载时的细观形貌

    Figure  7.  Micrographs of the JH-14C specimen at loading moments

    图  8  JH-14C试样的径向截面细观形貌

    Figure  8.  Micrographs of the radial cross-section of the JH-14C specimen

    图  9  JH-14C宏观断裂形貌

    Figure  9.  Macroscopic longitudinal fracture surface of JH-14C

    表  1  模型拟合结果的相关系数

    Table  1.   Correlation coefficients of the model fitting results

    $ \dot \varepsilon$/s−1R2
    0.1 0.990 5
    0.05 0.997 5
    0.01 0.998 7
    0.0050.992 5
    0.0010.984 2
    下载: 导出CSV
  • [1] 邓琼, 叶婷, 苗应刚. 基于Hopkinson压杆实验技术研究火工品及含能材料的抗高过载能力 [J]. 火炸药学报, 2009, 32(6): 66–70. DOI: 10.14077/j.issn.1007-7812.2009.06.019.

    DENG Q, YE T, MIAO Y G. Study on overloading-resistibility of initiator and energetic materials based on the technique of Hopkinson pressure bar [J]. Chinese Journal of Explosive & Propellants, 2009, 32(6): 66–70. DOI: 10.14077/j.issn.1007-7812.2009.06.019.
    [2] RAE P J, PALMER S J P, GOLDREIN H T, et al. Quasi-static studies of the deformation and failure of PBX 9501 [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458(2025): 2227–2242. DOI: 10.1098/rspa.2002.0967.
    [3] RAE P J. Quasi-static studies of the deformation, strength and failure of polymer bonded explosives [D]. Cambridge, UK: University of Cambridge, 2000.
    [4] RAE P J, GOLDREIN H T, PALMER S J P, et al. Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458: 743–762. DOI: 10.1098/rspa.2001.0894.
    [5] HEIDER N, STEINBRENNER A, AURICH H, et al. A method for the determination of the viscoelastic relaxation function of reactive materials [J]. The European Physical Journal Special Topics, 2016, 225(2): 397–407. DOI: 10.1140/epjst/e2015-66666-x.
    [6] HEIDER N, STEINBRENNER A, WEIDEMAIER P, et al. Modelling the mechanical behaviour of PBX KS32 [C] // 44th Annual Conference ICT. Karlsruhe, Germany: Fraunhofer Institute for Chemical Technology, 2013.
    [7] DIENES J K, ZUO Q H, KERSHNER J D. Impact initiation of explosives and propellants via statistical crack mechanics [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(6): 1237–1275. DOI: 10.1016/j.jmps.2005.12.001.
    [8] BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2303–2322. DOI: 10.1016/S0022-5096(98)00011-8.
    [9] 李硕, 袁俊明, 刘玉存, 等. 聚黑-14C的传爆装置冲击起爆实验及数值模拟 [J]. 火炸药学报, 2016, 39(6): 63–68,79. DOI: 10.14077/j.issn.1007-7812.2016.06.011.

    LI S, YUAN J M, LIU Y C, et al. Experiment and numerical simulation of shock initiation of JH-14C detonation device [J]. Chinese Journal of Explosives & Propellants, 2016, 39(6): 63–68,79. DOI: 10.14077/j.issn.1007-7812.2016.06.011.
    [10] 董理赢. 引信传爆序列殉爆反应特性研究 [D]. 太原: 中北大学, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.000896.

    DONG L Y. Study on the characteristics of the sympathetic detonation reaction in fuze explosive trains [D]. Taiyuan, China: North University of China, 2020. DOI: 10.27470/d.cnki.ghbgc.2020.000896.
    [11] 张子敏, 许碧英, 仲凯, 等. 冲击载荷下JH-14C传爆药的动态响应实验研究 [J]. 火炸药学报, 2010, 33(1): 57–59,63. DOI: 10.14077/j.issn.1007-7812.2010.01.018.

    ZHANG Z M, XU B Y, ZHONG K, et al. Experimental study on the dynamic response of booster explosive JH-14C under impact load [J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 57–59,63. DOI: 10.14077/j.issn.1007-7812.2010.01.018.
    [12] 张子敏, 许碧英, 贾建新, 等. 基于Hopkinson杆技术分析典型传爆药的动态力学性能 [J]. 含能材料, 2012, 20(1): 62–66. DOI: 10.3969/j.issn.1006-9941.2012.01.015.

    ZHANG Z M, XU B Y, JIA J X, et al. Analysis on dynamic properties of typical boosters based on Hopkinson bars [J]. Chinese Journal of Energetic Materials, 2012, 20(1): 62–66. DOI: 10.3969/j.issn.1006-9941.2012.01.015.
    [13] GRAY Ⅲ G T, IDAR D J, BLUMENTHAL W R, et al. High- and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature [R]. Washington, DC, USA: Office of Scientific & Technical Information Technical Reports, 1998.
    [14] IDAR D J, THOMPSON D G, GRAY Ⅲ G T, et al. Influence of polymer molecular weight, temperature, and strain rate on the mechanical properties of PBX 9501 [J]. AIP Conference Proceedings, 2002, 620(1): 821–824. DOI: 10.1063/1.1483663.
    [15] RENGANATHAN K, RAO B N, JANA M K. Failure assessment on a strip biaxial tension specimen for a HTPB-based propellant material [J]. Propellants, Explosives, Pyrotechnics, 2015, 24(6): 349–352. DOI: 10.1002/(SICI)1521-4087(199912)24:6<349::AID-PREP349>3.0.CO;2-1.
    [16] OTTOSEN N S, RISTINMAA M. The mechanics of constitutive modeling [M]. Oxford UK: Elsevier Limited, 2005: 165-174.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  208
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-09-16
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回