超高速撞击下碎片云的OTM分析

廖祜明 黎波 樊江 焦立新 于帅超 林健宇 裴晓阳

廖祜明, 黎波, 樊江, 焦立新, 于帅超, 林健宇, 裴晓阳. 超高速撞击下碎片云的OTM分析[J]. 爆炸与冲击, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275
引用本文: 廖祜明, 黎波, 樊江, 焦立新, 于帅超, 林健宇, 裴晓阳. 超高速撞击下碎片云的OTM分析[J]. 爆炸与冲击, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275
LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275
Citation: LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275

超高速撞击下碎片云的OTM分析

doi: 10.11883/bzycj-2021-0275
详细信息
    作者简介:

    廖祜明(1987- ),男,博士,liaohuming@buaa.edu.cn

    通讯作者:

    樊 江(1973- ),男,博士,副教授,fanjiang@buaa.edu.cn

  • 中图分类号: O385

OTM analysis of debris cloud under hypervelocity impact

  • 摘要: 空间碎片超高速撞击是典型的高温、高压、高应变率的极限力学问题,涉及材料复杂的动态响应,对传统的数值方法提出了巨大挑战。最优运输无网格(OTM)方法通过有机结合最优运输时间积分理论、局部最大熵无网格近似、物质点抽样、基于物理的裂纹扩展算法以及大规模并行计算策略,克服了传统数值方法瓶颈,在理论上保证了不同形式能量耗散的自主耦合分配,为超高速撞击仿真预测提供了高效的解决方案。采用基于OTM方法自主研发的极限力学仿真软件ESCAAS,对不同质量(3、10 g)的铜飞片以不同撞击角度(5.4°、11.7°)和不同撞击速度(5.55、5.12 km/s)撞击铝合金靶板的过程进行数值模拟,获得碎片云的形貌、靶板穿孔孔径等结果,与实验测量数据吻合良好,显示出OTM方法及ESCAAS软件可以作为超高速撞击的有力数值分析手段。
  • 图  1  空间离散示意图[21]

    Figure  1.  Spatial discrete schematic diagram[21]

    图  2  局部最大熵插值函数[22]

    Figure  2.  Local maximum entropy shape function[22]

    图  3  捕捉式接触算法及节点邻域示意图[23]

    Figure  3.  Schematic of the seizing contact algorithm and the support of nodes [23]

    图  4  EigenErosion算法等效能量释放率计算示意图 [24]

    Figure  4.  Schematic of the equivalent energy release rate calculation of the EigenErosion algorithm [24]

    图  5  计算模型示意图

    Figure  5.  Calculation models schematic diagram

    图  6  工况1不同时刻下碎片云轮廓

    Figure  6.  Debris cloud outlines at different moments of 3 g copper impact (condition 1)

    图  7  工况1碎片云形貌对比情况 (6.4 μs)

    Figure  7.  Debris cloud shape comparison at 6.4 μs (condition 1)

    图  8  工况1靶板穿孔直径

    Figure  8.  Perforation diameter of target plate (condition 1)

    图  9  工况2不同时刻下碎片云轮廓

    Figure  9.  Debris cloud outlines at different moments of 10 g copper impcat (condition 2)

    图  10  工况2碎片云形貌对比情况 (7.6 μs)

    Figure  10.  Debris cloud shape comparison at 7.6 μs (condition 2)

    图  11  工况2靶板穿孔直径

    Figure  11.  Perforation diameter of the target plate (condition 2)

    表  1  材料物性参数

    Table  1.   Material parameters

    材料密度/
    (kg·m−3)
    杨氏模量/
    GPa
    泊松比临界能量释放率/
    (kJ·m−2)
    OFHC铜8930.0129.00.35250.0
    Al6061-T6铝合金2700.068.90.33100.0
    下载: 导出CSV

    表  2  材料本构模型参数

    Table  2.   Parameters of material constitutive model

    材料σ0/MPa$ {\varepsilon }_{0}^{\mathrm{p}} $$ {\dot{\varepsilon }}_{0}^{\mathrm{p}} $nmlTm/K
    OFHC铜120.00.02781.00.451.01.01790.0
    Al6061-T6铝合金270.00.00251.00.1480.013891.01200.0
    下载: 导出CSV
  • [1] 刘岩, 张雄, 刘平, 等. 空间碎片防护问题的物质点无网格法与软件系统 [J]. 载人航天, 2015, 21(5): 503–509. DOI: 10.16329/j.cnki.zrht.2015.05.013.

    LIU Y, ZHANG X, LIU P, et al. Meshfree material point method and software system for problems of shielding space debris [J]. Manned Spaceflight, 2015, 21(5): 503–509. DOI: 10.16329/j.cnki.zrht.2015.05.013.
    [2] DONEA J, GIULIANI S, HALLEUX J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 33(1): 689–723. DOI: 10.1016/0045-7825(82)90128-1.
    [3] DONEA J, HUERTA A, PONTHOT J P, et al. Arbitrary Lagrangian-Eulerian methods [M]//STEIN E, DE BORST R, HUGHES T J R. Encyclopedia of Computational Mechanics. John Wiley, 2004: 413–437. DOI: 10.1002/0470091355.ecm009.
    [4] QUAN X, BIRNBAUM N K, COWLER M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach [C]// 5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, 2003.
    [5] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1997, 181(3): 375–389. DOI: 10.1093/mnras/181.3.375.
    [6] LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9): 1081–1106. DOI: 10.1002/fld.1650200824.
    [7] ZHANG X, CHEN Z, LIU Y. The material point method [M]//ZHANG X, CHEN Z, LIU Y. The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases. Oxford: Academic Press, 2017: 37-101. DOI: 10.1016/B978-0-12-407716-4.00003-X.
    [8] 闫晓军, 张玉珠, 聂景旭. 空间碎片超高速碰撞数值模拟的SPH方法 [J]. 北京航空航天大学学报, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.

    YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of space debris hypervelocity impact using SPH method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.
    [9] 刘有英, 王海福. 高速碰撞下航天器防护结构效能评价 [J]. 弹箭与制导学报, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.

    LIU Y Y, WANG H F. Evaluations of high-velocity impact for spacecraft shields [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.
    [10] 强洪夫, 范树佳, 陈福振, 等. 基于拟流体模型的SPH新方法及其在弹丸超高速碰撞薄板中的应用 [J]. 爆炸与冲击, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.

    QIANG H F, FAN S J, CHEN F Z, et al. A new smoothed particle hydrodynamics method based on the pseudo-fluid model and its application in hypervelocity impact of a projectile on a thin plate [J]. Explosion and Shock Waves, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.
    [11] 林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.

    LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
    [12] LI B, HABBAL F, ORTIZ M, et al. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. International Journal for Numerical Methods in Engineering, 2010, 83(12): 1541–1579. DOI: 10.1002/nme.2869.
    [13] ARROYO M, ORTIZ M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods [J]. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2167–2202. DOI: 10.1002/nme.1534.
    [14] SANTAMBROGIO F. Introduction to optimal transport theory [EB/OL]. arXiv: 1009.3856. (2010-09-20)[2021-07-01]. https://doi.org/10.48550/arXiv.1009.3856.
    [15] LI B, STALZER M, ORTIZ M. A massively parallel implementation of the optimal transportation meshfree method for explicit solid dynamics [J]. International Journal for Numerical Methods in Engineering, 2014, 100(1): 40–61. DOI: 10.1002/nme.4710.
    [16] SCHMIDT B, FRATERNALI F, ORTIZ M. Eigenfracture: an eigendeformation approach to variational fracture [J]. Multiscale Modeling & Simulation, 2009, 7(3): 1237–1266. DOI: 10.1137/080712568.
    [17] LI B, PANDOLFI A, ORTIZ M. Material-point erosion simulation of dynamic fragmentation of metals [J]. Mechanics of Materials, 2015, 80: 288–297. DOI: 10.1016/j.mechmat.2014.03.008.
    [18] PANDOLFI A, LI B, ORTIZ M. Modeling fracture by material-point erosion [J]. International Journal of Fracture, 2013, 184(1/2): 3–16. DOI: 10.1007/s10704-012-9788-x.
    [19] 樊江, 袁圆, 廖祜明, 等. 基于最优运输无网格法的Whipple屏超高速撞击数值模拟 [J]. 爆炸与冲击, 2019, 40(7): 074201. DOI: 10.11883/bzycj-2019-0241.

    FAN J, YUAN Y, LIAO H M, et al. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method [J]. Explosion and Shock Waves, 2019, 40(7): 074201. DOI: 10.11883/bzycj-2019-0241.
    [20] STAINIER L. A variational approach to modeling coupled thermo-mechanical nonlinear dissipative behaviors [J]. Advances in Applied Mechanics, 2013, 46: 69–126. DOI: 10.1016/B978-0-12-396522-6.00002-5.
    [21] 廖祜明. 整体拉格日无网格流固耦合计算方法 [D]. 北京: 北京航空航天大学, 2018: 33–34.
    [22] FAN J, LIAO H M, WANG H, et al. Local maximum-entropy based surrogate model and its application to structural reliability analysis [J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 373–392. DOI: 10.1007/s00158-017-1760-y.
    [23] FAN Z Y, WANG H, HUANG Z D, et al. A Lagrangian meshfree mesoscale simulation of powder bed fusion additive manufacturing of metals [J]. International Journal for Numerical Methods in Engineering, 2021, 122(2): 483–514. DOI: 10.1002/nme.6546.
    [24] NAVAS P, YU R C, LI B, et al. Modeling the dynamic fracture in concrete: an eigensoftening meshfree approach [J]. International Journal of Impact Engineering, 2018, 113: 9–20. DOI: 10.1016/j.ijimpeng.2017.11.004.
    [25] PIEKUTOWSKI A J. A simple dynamic model for the formation of debris clouds [J]. International Journal of Impact Engineering, 1990, 10(1): 453–471. DOI: 10.1016/0734-743X(90)90079-B.
    [26] STEINBERG D J. Equation of state and strength properties of selected materials [M]. Livermore: Lawrence Livermore National Laboratory, 1996.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  290
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2022-08-26
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回