Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

超高速撞击下碎片云的OTM分析

廖祜明 黎波 樊江 焦立新 于帅超 林健宇 裴晓阳

刘孝敏, 胡时胜. 应力脉冲在变截面SHPB锥杆中的传播特性[J]. 爆炸与冲击, 2000, 20(2): 110-114. doi: 10.11883/1001-1455(2000)02-0110-5
引用本文: 廖祜明, 黎波, 樊江, 焦立新, 于帅超, 林健宇, 裴晓阳. 超高速撞击下碎片云的OTM分析[J]. 爆炸与冲击, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275
LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275
Citation: LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275

超高速撞击下碎片云的OTM分析

doi: 10.11883/bzycj-2021-0275
详细信息
    作者简介:

    廖祜明(1987- ),男,博士,liaohuming@buaa.edu.cn

    通讯作者:

    樊 江(1973- ),男,博士,副教授,fanjiang@buaa.edu.cn

  • 中图分类号: O385

OTM analysis of debris cloud under hypervelocity impact

  • 摘要: 空间碎片超高速撞击是典型的高温、高压、高应变率的极限力学问题,涉及材料复杂的动态响应,对传统的数值方法提出了巨大挑战。最优运输无网格(OTM)方法通过有机结合最优运输时间积分理论、局部最大熵无网格近似、物质点抽样、基于物理的裂纹扩展算法以及大规模并行计算策略,克服了传统数值方法瓶颈,在理论上保证了不同形式能量耗散的自主耦合分配,为超高速撞击仿真预测提供了高效的解决方案。采用基于OTM方法自主研发的极限力学仿真软件ESCAAS,对不同质量(3、10 g)的铜飞片以不同撞击角度(5.4°、11.7°)和不同撞击速度(5.55、5.12 km/s)撞击铝合金靶板的过程进行数值模拟,获得碎片云的形貌、靶板穿孔孔径等结果,与实验测量数据吻合良好,显示出OTM方法及ESCAAS软件可以作为超高速撞击的有力数值分析手段。
  • 图  1  空间离散示意图[21]

    Figure  1.  Spatial discrete schematic diagram[21]

    图  2  局部最大熵插值函数[22]

    Figure  2.  Local maximum entropy shape function[22]

    图  3  捕捉式接触算法及节点邻域示意图[23]

    Figure  3.  Schematic of the seizing contact algorithm and the support of nodes [23]

    图  4  EigenErosion算法等效能量释放率计算示意图 [24]

    Figure  4.  Schematic of the equivalent energy release rate calculation of the EigenErosion algorithm [24]

    图  5  计算模型示意图

    Figure  5.  Calculation models schematic diagram

    图  6  工况1不同时刻下碎片云轮廓

    Figure  6.  Debris cloud outlines at different moments of 3 g copper impact (condition 1)

    图  7  工况1碎片云形貌对比情况 (6.4 μs)

    Figure  7.  Debris cloud shape comparison at 6.4 μs (condition 1)

    图  8  工况1靶板穿孔直径

    Figure  8.  Perforation diameter of target plate (condition 1)

    图  9  工况2不同时刻下碎片云轮廓

    Figure  9.  Debris cloud outlines at different moments of 10 g copper impcat (condition 2)

    图  10  工况2碎片云形貌对比情况 (7.6 μs)

    Figure  10.  Debris cloud shape comparison at 7.6 μs (condition 2)

    图  11  工况2靶板穿孔直径

    Figure  11.  Perforation diameter of the target plate (condition 2)

    表  1  材料物性参数

    Table  1.   Material parameters

    材料密度/
    (kg·m−3)
    杨氏模量/
    GPa
    泊松比临界能量释放率/
    (kJ·m−2)
    OFHC铜8930.0129.00.35250.0
    Al6061-T6铝合金2700.068.90.33100.0
    下载: 导出CSV

    表  2  材料本构模型参数

    Table  2.   Parameters of material constitutive model

    材料σ0/MPaεp0˙εp0nmlTm/K
    OFHC铜120.00.02781.00.451.01.01790.0
    Al6061-T6铝合金270.00.00251.00.1480.013891.01200.0
    下载: 导出CSV
  • [1] 刘岩, 张雄, 刘平, 等. 空间碎片防护问题的物质点无网格法与软件系统 [J]. 载人航天, 2015, 21(5): 503–509. DOI: 10.16329/j.cnki.zrht.2015.05.013.

    LIU Y, ZHANG X, LIU P, et al. Meshfree material point method and software system for problems of shielding space debris [J]. Manned Spaceflight, 2015, 21(5): 503–509. DOI: 10.16329/j.cnki.zrht.2015.05.013.
    [2] DONEA J, GIULIANI S, HALLEUX J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 33(1): 689–723. DOI: 10.1016/0045-7825(82)90128-1.
    [3] DONEA J, HUERTA A, PONTHOT J P, et al. Arbitrary Lagrangian-Eulerian methods [M]//STEIN E, DE BORST R, HUGHES T J R. Encyclopedia of Computational Mechanics. John Wiley, 2004: 413–437. DOI: 10.1002/0470091355.ecm009.
    [4] QUAN X, BIRNBAUM N K, COWLER M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach [C]// 5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, 2003.
    [5] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1997, 181(3): 375–389. DOI: 10.1093/mnras/181.3.375.
    [6] LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9): 1081–1106. DOI: 10.1002/fld.1650200824.
    [7] ZHANG X, CHEN Z, LIU Y. The material point method [M]//ZHANG X, CHEN Z, LIU Y. The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases. Oxford: Academic Press, 2017: 37-101. DOI: 10.1016/B978-0-12-407716-4.00003-X.
    [8] 闫晓军, 张玉珠, 聂景旭. 空间碎片超高速碰撞数值模拟的SPH方法 [J]. 北京航空航天大学学报, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.

    YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of space debris hypervelocity impact using SPH method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.
    [9] 刘有英, 王海福. 高速碰撞下航天器防护结构效能评价 [J]. 弹箭与制导学报, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.

    LIU Y Y, WANG H F. Evaluations of high-velocity impact for spacecraft shields [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.
    [10] 强洪夫, 范树佳, 陈福振, 等. 基于拟流体模型的SPH新方法及其在弹丸超高速碰撞薄板中的应用 [J]. 爆炸与冲击, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.

    QIANG H F, FAN S J, CHEN F Z, et al. A new smoothed particle hydrodynamics method based on the pseudo-fluid model and its application in hypervelocity impact of a projectile on a thin plate [J]. Explosion and Shock Waves, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.
    [11] 林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.

    LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
    [12] LI B, HABBAL F, ORTIZ M, et al. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. International Journal for Numerical Methods in Engineering, 2010, 83(12): 1541–1579. DOI: 10.1002/nme.2869.
    [13] ARROYO M, ORTIZ M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods [J]. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2167–2202. DOI: 10.1002/nme.1534.
    [14] SANTAMBROGIO F. Introduction to optimal transport theory [EB/OL]. arXiv: 1009.3856. (2010-09-20)[2021-07-01]. https://doi.org/10.48550/arXiv.1009.3856.
    [15] LI B, STALZER M, ORTIZ M. A massively parallel implementation of the optimal transportation meshfree method for explicit solid dynamics [J]. International Journal for Numerical Methods in Engineering, 2014, 100(1): 40–61. DOI: 10.1002/nme.4710.
    [16] SCHMIDT B, FRATERNALI F, ORTIZ M. Eigenfracture: an eigendeformation approach to variational fracture [J]. Multiscale Modeling & Simulation, 2009, 7(3): 1237–1266. DOI: 10.1137/080712568.
    [17] LI B, PANDOLFI A, ORTIZ M. Material-point erosion simulation of dynamic fragmentation of metals [J]. Mechanics of Materials, 2015, 80: 288–297. DOI: 10.1016/j.mechmat.2014.03.008.
    [18] PANDOLFI A, LI B, ORTIZ M. Modeling fracture by material-point erosion [J]. International Journal of Fracture, 2013, 184(1/2): 3–16. DOI: 10.1007/s10704-012-9788-x.
    [19] 樊江, 袁圆, 廖祜明, 等. 基于最优运输无网格法的Whipple屏超高速撞击数值模拟 [J]. 爆炸与冲击, 2019, 40(7): 074201. DOI: 10.11883/bzycj-2019-0241.

    FAN J, YUAN Y, LIAO H M, et al. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method [J]. Explosion and Shock Waves, 2019, 40(7): 074201. DOI: 10.11883/bzycj-2019-0241.
    [20] STAINIER L. A variational approach to modeling coupled thermo-mechanical nonlinear dissipative behaviors [J]. Advances in Applied Mechanics, 2013, 46: 69–126. DOI: 10.1016/B978-0-12-396522-6.00002-5.
    [21] 廖祜明. 整体拉格日无网格流固耦合计算方法 [D]. 北京: 北京航空航天大学, 2018: 33–34.
    [22] FAN J, LIAO H M, WANG H, et al. Local maximum-entropy based surrogate model and its application to structural reliability analysis [J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 373–392. DOI: 10.1007/s00158-017-1760-y.
    [23] FAN Z Y, WANG H, HUANG Z D, et al. A Lagrangian meshfree mesoscale simulation of powder bed fusion additive manufacturing of metals [J]. International Journal for Numerical Methods in Engineering, 2021, 122(2): 483–514. DOI: 10.1002/nme.6546.
    [24] NAVAS P, YU R C, LI B, et al. Modeling the dynamic fracture in concrete: an eigensoftening meshfree approach [J]. International Journal of Impact Engineering, 2018, 113: 9–20. DOI: 10.1016/j.ijimpeng.2017.11.004.
    [25] PIEKUTOWSKI A J. A simple dynamic model for the formation of debris clouds [J]. International Journal of Impact Engineering, 1990, 10(1): 453–471. DOI: 10.1016/0734-743X(90)90079-B.
    [26] STEINBERG D J. Equation of state and strength properties of selected materials [M]. Livermore: Lawrence Livermore National Laboratory, 1996.
  • 加载中
推荐阅读
超高速撞击条件下混凝土靶体内 应力波的测量和分析
钱秉文 等, 爆炸与冲击, 2025
循环冲击作用下砂岩裂缝扩展及渗透率响应特征
王伟 等, 爆炸与冲击, 2025
动载荷下固体推进剂损伤演化原位成像研究
苑永祥 等, 爆炸与冲击, 2025
孔洞增长层裂模型的改进及其在模拟不同加载波形层裂实验结果方面的应用
张凤国 等, 爆炸与冲击, 2024
预应力对电梯钢丝绳中弹性波传播特性的影响
魏义敏 等, 浙江理工大学学报(自然科学), 2023
基于sph方法的钢筋混凝土切削模拟研究
谭松成 等, 金刚石与磨料磨具工程, 2023
20 gpa斜波压缩下pbx-14炸药的动力学响应
种涛 等, 高压物理学报, 2022
The role of silicon in drug discovery: a review
Panayides, Jenny-Lee et al., RSC MEDICINAL CHEMISTRY, 2024
Numerical investigation on the bearing capacity of rc columns strengthened by hpfl-bsp under combined loadings
JOURNAL OF BUILDING ENGINEERING
Effect of particle size distribution on dynamic properties of cemented coral sand under shpb impact loading
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2022
Powered by
图(11) / 表(2)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  364
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2022-08-26
  • 网络出版日期:  2022-09-08
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回