一维轴对称杆件爆源模型及其在台阶爆破模拟中的应用

朱心广 冯春 王心泉 程鹏达 高圣元

朱心广, 冯春, 王心泉, 程鹏达, 高圣元. 一维轴对称杆件爆源模型及其在台阶爆破模拟中的应用[J]. 爆炸与冲击, 2022, 42(11): 115202. doi: 10.11883/bzycj-2021-0276
引用本文: 朱心广, 冯春, 王心泉, 程鹏达, 高圣元. 一维轴对称杆件爆源模型及其在台阶爆破模拟中的应用[J]. 爆炸与冲击, 2022, 42(11): 115202. doi: 10.11883/bzycj-2021-0276
ZHU Xinguang, FENG Chun, WANG Xinquan, CHENG Pengda, GAO Shengyuan. A one-dimensional axisymmetric explosive model and its application in bench blasting simulation[J]. Explosion And Shock Waves, 2022, 42(11): 115202. doi: 10.11883/bzycj-2021-0276
Citation: ZHU Xinguang, FENG Chun, WANG Xinquan, CHENG Pengda, GAO Shengyuan. A one-dimensional axisymmetric explosive model and its application in bench blasting simulation[J]. Explosion And Shock Waves, 2022, 42(11): 115202. doi: 10.11883/bzycj-2021-0276

一维轴对称杆件爆源模型及其在台阶爆破模拟中的应用

doi: 10.11883/bzycj-2021-0276
基金项目: 科技部国家重点研发项目(2018YFC1505504)
详细信息
    作者简介:

    朱心广(1993- ),男,博士研究生,zhuxinguang@imech.ac.cn

    通讯作者:

    冯 春(1982- ),男,博士研究生,高级工程师,fengchun@imech.ac.cn

  • 中图分类号: O389

A one-dimensional axisymmetric explosive model and its application in bench blasting simulation

  • 摘要: 为了解决在实体炮孔建模时需要加密网格、计算量大等问题,提出了一种一维轴对称爆源模型:利用一维线状杆件表述炮孔及炸药,实体单元表述周围岩体,通过杆件节点与实体单元的拓扑关系,将杆件节点上的爆生气体压力施加至周围实体单元上,并根据实体单元的体应变计算出杆件节点处的横截面变化情况,从而实现模拟炸药与周围岩体的相互作用。通过与实体炮孔模型的数值对比分析,发现压力衰减指数为1.25时,一维轴对称爆源模型获得的径向质点峰值振动速度(peak particle velocity, PPV)衰减规律及振动速度时程曲线与实体炮孔模型基本一致,证明了该模型在模拟爆破问题中的精确性。针对混凝土块动态爆破破坏特性的研究,通过与文献对比分析,进一步验证了该模型的正确性。为验证该一维轴对称爆源模型在台阶爆破模拟中的应用,以鞍钢露天铁矿台阶爆破开采为研究对象,建立了5排50炮孔三维台阶爆破概化模型,模拟了爆区内露天边坡的损伤破坏状态。数值计算结果表明,爆区内拉伸破坏为主,并且除了离爆源较近的第一个测点外,其余测点处的振动速度峰值大小及其随距离的变化规律与现场实测数据基本一致,证明了所提爆源模型在三维台阶爆破远场模拟的可行性。
  • 图  1  杆件单元与实体网格的耦合示意

    Figure  1.  Schematic of coupling of bar and solid mesh

    图  2  模型A (径向分割16份)

    Figure  2.  Model A (dividing into 16 segment in the radial direction)

    图  3  模型B (水平向分割16份)

    Figure  3.  Model B (dividing into 16 segment in the horizontal direction)

    图  4  测点处径向峰值振动速度随单元尺寸的变化

    Figure  4.  Variation of radial peak particle velocity at monitoring points with element size

    图  5  测点处径向振动速度时程曲线

    Figure  5.  History of radial velocity at monitoring point

    图  6  混凝土整体模型及剖面示意图

    Figure  6.  Concrete integral model and section diagram

    图  7  位于炮孔中部位置的模型爆炸结果剖视图 (20 ms)

    Figure  7.  Sectional view of model explosion results in the middle of the blast hole after 20 ms

    图  8  鞍钢露天矿现场

    Figure  8.  Site view of Angang strip mine

    图  9  含50炮孔的台阶爆破数值模型

    Figure  9.  The bench blasting model with 50 bore holes

    图  10  台阶爆破后边坡的破坏状态

    Figure  10.  Failure status of slope after bench blasting

    图  11  峰值振动速度随距离的变化曲线

    Figure  11.  The curve of peak particle velocity with distance

    表  1  铁矿石的力学参数

    Table  1.   Mechanical parameters of iron ore

    密度/(kg·m−3弹性模量/GPa泊松比粘聚力/MPa内摩擦角/(°)抗拉强度/MPa
    3200600.25364012
    下载: 导出CSV

    表  2  乳化炸药的参数

    Table  2.   Parameters of emulsion

    密度/(kg·m−3爆速/(m·s−1爆热/(MJ·kg−1失效时间/ms
    115056003.415
    下载: 导出CSV
  • [1] PERSON P A, HOLMBERG R, LEE J. Rock blasting and explosives engineering [C]// International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1995, 6(32): 278A. DOI: 10.1016/0148-9062(95)99213-H.
    [2] CROUCH S L, STARFIELD A M, RIZZO F J. Boundary element methods in solid mechanics [J]. Journal of Applied Mechanics, 1983, 50(3): 704–705. DOI: 10.1115/1.3167130.
    [3] NAGEL N B, SANCHEZ-NAGEL M. Stress shadowing and microseismic events: a numerical evaluation [C]// SPE Annual Technical Conference and Exhibition. Denver: One Petro, 2011: 4223–4243. DOI: 10.2118/147363-MS.
    [4] 张凤鹏, 金校元, 冯夏庭. 台阶高度对露天矿爆破效果影响的三维有限元分析 [J]. 岩石力学与工程学报, 2002, 21(12): 1835–1838. DOI: 10.3321/j.issn:1000-6915.2002.12.018.

    ZHANG F P, JIN X Y, FENG X T. 3D fem analysis of the influence of bench height on open-pit mines bench blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1835–1838. DOI: 10.3321/j.issn:1000-6915.2002.12.018.
    [5] 农深富. 露天矿深孔爆破振动作用下边坡的稳定性分析 [D]. 南宁: 广西大学, 2016. DOI: 10.7666/d.Y3086543.

    NONG S F. Slope stability analysis of deep-hole blasting open-pit mine vibration effect [D]. Nanning: Guangxi University, 2016. DOI: 10.7666/d.Y3086543.
    [6] CUNDALL P A. A computer model for simulating progressive large-scale movements in blocky rock systems [C]//Proceedings of Symposium of the International Society for Rock Mechanics. Nancy: ISRM, 1971: II-8.
    [7] SHI G H. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures [J]. Engineering Computations, 1992, 9(2): 157–168. DOI: 10.1108/eb023855.
    [8] DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs [J]. Computers and Geotechnics, 2016, 71: 283–294. DOI: 10.1016/j.compgeo.2015.06.007.
    [9] 张雄, 廉艳平, 杨鹏飞, 等. 冲击爆炸问题的三维物质点法数值仿真 [C]// 2011计算机辅助工程及其理论研讨会论文集. 上海: 中国力学学会, 2011: 29–37.
    [10] 曾治鑫, 阚镭, 张雄. 层裂问题的交错网格物质点法研究 [J]. 固体力学学报, 2021, 42(3): 320–333. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2021.010.

    ZENG Z X, KAN L, ZHANG X. The staggered grid material point method (SGMP) simulation of spallation [J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 320–333. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2021.010.
    [11] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977, 82: 1013–1024. DOI: 10.1086/112164.
    [12] 赵健, 张贵才, 徐依吉, 等. 基于SPH方法粒子射流破岩数值模拟与实验研究 [J]. 爆炸与冲击, 2017, 37(3): 479–486. DOI: 10.11883/1001-1455(2017)03-0479-08.

    ZHAO J, ZHANG G C, XU Y J, et al. SPH-based numerical simulation and experimental study on rock breaking by particle impact [J]. Explosion and Shock Waves, 2017, 37(3): 479–486. DOI: 10.11883/1001-1455(2017)03-0479-08.
    [13] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. DOI: 10.1007/s11831-010-9040-7.
    [14] 宗智, 邹丽, 刘谋斌, 等. 模拟二维水下爆炸问题的光滑粒子(SPH)方法 [J]. 水动力学研究与进展, 2007, 22(1): 61–67. DOI: 10.3969/j.issn.1000-4874.2007.01.009.

    ZONG Z, ZOU L, LIU M B, et al. SPH simulation of two-dimensional underwater explosion [J]. Journal of Hydrodynamics, 2007, 22(1): 61–67. DOI: 10.3969/j.issn.1000-4874.2007.01.009.
    [15] 余仁兵, 陈震, 曾勇, 等. 铜绿山矿井下深孔爆破孔网参数数值模拟研究 [J]. 采矿技术, 2014, 14(2): 82–85. DOI: 10.13828/j.cnki.ckjs.2014.02.030.
    [16] 丁希平. 深孔台阶爆破应力场及若干设计参数的数值分析研究 [D]. 北京: 铁道部科学研究院, 2001.

    DING X P. Digital analysis of stress distribution and some parameters of deep hole bench blasting [D]. Beijing: China Academy of Railway Sciences, 2001.
    [17] 璩世杰, 刘际飞. 节理角度对预裂爆破成缝效果的影响研究 [J]. 岩土力学, 2015, 36(1): 189–194, 204. DOI: 10.16285/j.rsm.2015.01.026.

    QU S J, LIU J F. Numerical analysis of joint angle effect on cracking with presplit blasting [J]. Rock and Soil Mechanics, 2015, 36(1): 189–194, 204. DOI: 10.16285/j.rsm.2015.01.026.
    [18] 刘超. 炮孔空气间隔装药爆破技术研究 [D]. 长沙: 长沙矿山研究院, 2017.

    LIU C. Research on air gap charging blasting technology [D]. Changsha: Changsha Institute of Mining Research, 2017.
    [19] 谢冰, 李海波, 王长柏, 等. 节理几何特征对预裂爆破效果影响的数值模拟 [J]. 岩土力学, 2011, 32(12): 3812–3820. DOI: 10.3969/j.issn.1000-7598.2011.12.044.

    XIE B, LI H B, WANG C B, et al. Numerical simulation of presplit blasting influenced by geometrical characteristics of joints [J]. Rock and Soil Mechanics, 2011, 32(12): 3812–3820. DOI: 10.3969/j.issn.1000-7598.2011.12.044.
    [20] YAN P, ZHOU W X, LU W B, et al. Simulation of bench blasting considering fragmentation size distribution [J]. International Journal of Impact Engineering, 2016, 90: 132–145. DOI: 10.1016/j.ijimpeng.2015.11.015.
    [21] 郭双, 武鑫, 甯尤军. 地应力条件下爆破载荷破岩的DDA模拟研究 [J]. 工程爆破, 2018, 24(5): 8–14. DOI: 10.3969/j.issn.1006-7051.2018.05.002.

    GUO S, WU X, NING Y J. DDA simulations of rock fracture by blasting loads under geostress conditions [J]. Engineering Blasting, 2018, 24(5): 8–14. DOI: 10.3969/j.issn.1006-7051.2018.05.002.
    [22] 江成, 甯尤军, 武鑫. 地应力条件下的凿岩爆破数值模拟 [J]. 工程爆破, 2017, 23(1): 16–20. DOI: 10.3969/j.issn.1006-7051.2017.01.004.

    JIANG C, NING Y J, WU X. Numerical simulation of drilling blasting under earth stress [J]. Engineering Blasting, 2017, 23(1): 16–20. DOI: 10.3969/j.issn.1006-7051.2017.01.004.
    [23] HAN H Y, FUKUDA D, LIU H Y, et al. FDEM simulation of rock damage evolution induced by contour blasting in the bench of tunnel at deep depth [J]. Tunnelling and Underground Space Technology, 2020, 103: 103495. DOI: 10.1016/j.tust.2020.103495.
    [24] 郑炳旭, 冯春, 宋锦泉, 等. 炸药单耗对赤铁矿爆破块度的影响规律数值模拟研究 [J]. 爆破, 2015, 32(3): 62–69. DOI: 10.3963/j.issn.1001-487X.2015.03.011.

    ZHENG B X, FENG C, SONG J Q, et al. Numerical study on relationship between specific charge and fragmentation distribution of hematite [J]. Blasting, 2015, 32(3): 62–69. DOI: 10.3963/j.issn.1001-487X.2015.03.011.
    [25] 冯春, 李世海, 郑炳旭, 等. 基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟 [J]. 爆炸与冲击, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.

    FENG C, LI S H, ZHENG B X, et al. Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM [J]. Explosion and Shock Waves, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.
    [26] FENG C, LI S H, LIU X Y, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1): 26–35. DOI: 10.1016/j.jrmge.2013.12.001.
    [27] LI S H, ZHAO M H, WANG Y N, et al. A new numerical method for DEM-block and particle model [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 436. DOI: 10.1016/j.ijrmms.2003.12.076.
    [28] ONEDERRA I A, FURTNEY J K, SELLERS E, et al. Modelling blast induced damage from a fully coupled explosive charge [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 73–84. DOI: 10.1016/j.ijrmms.2012.10.004.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  493
  • HTML全文浏览量:  178
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2022-07-20
  • 网络出版日期:  2022-08-07
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回