An experimental study on propagation characteristics of blast waves under plateau environment
-
摘要: 在评估弹药在高原的爆炸威力时,需要考虑高海拔条件对炸药爆炸冲击波参数的影响。为研究高海拔低气压条件下的冲击波传播规律,开展了模拟海拔高度h=500, 2 500, 4 500 m等3种气压条件下的爆炸冲击波测试实验。结果表明,当环境气压每下降20%时,冲击波超压、比冲量和到达时间平均降低约9%、10%和6%。将使用Sachs因子修正后的计算结果与测试数据进行对比分析,发现该方法能较好地预测不同环境条件下的爆炸冲击波参数。进一步分析了环境温度的影响,发现初始温度升高会使到达时间提前,本文实验的温度条件对超压和比冲量的影响并不显著。该研究结果对战斗部在高海拔的爆炸威力评估具有参考意义。Abstract: It is necessary to take into consideration the effects of elevated-altitude conditions on the propagation characteristics of blast waves when evaluating the explosion power of ammunitions under plateau environment. In order to study the propagation characteristics of blast wave under plateau environment with low pressure, experiments were carried out at simulated plateau environment at altitudes of 500, 2 500 and 4 500 m, respectively. Results show that when the ambient air pressure decreases by 20%, the overpressure, specific impulse and arrival time of blast wave decrease in average by about 9%, 10% and 6%, respectively. Calculated results corrected by Sachs' factor are compared with the test data. It is found that the method proposed in the present study can better predict the blast wave parameters under different environmental conditions. The effects of ambient temperature were also studied. It is concluded that the increase of the initial ambient temperature will reduce the arrival time of blast wave, however, the effects of ambient temperature on the overpressure and specific impulse are not significant. The results have reference significance for the evaluation of warhead explosion power at elevated altitude.
-
Key words:
- blast wave /
- high altitude /
- explosion experiment /
- propagation characteristics
-
图 10 Kinney公式的计算结果与实验数据对比
Figure 10. Comparison of the results calculated by Kinney’s formula[15] with experimental data
表 1 大气参数
Table 1. Atmospheric parameters
h/m ph/kPa ρh/(kg·m−3) ch/(m·s−1) Th/K 0 101.33 1.23 340.29 288.15 1 000 89.88 1.11 336.43 281.65 3 000 70.11 0.91 328.58 268.65 5 000 54.02 0.74 320.53 255.65 表 2 初始实验条件
Table 2. Initial experimental conditions
组别 h/m rsp/mm msp/kg ph/kPa Th/K 1 500 35 0.292 94.51 310.35 2 500 35 0.291 95.02 299.95 3 2 500 35 0.292 74.05 299.85 4 2 500 35 0.291 73.99 298.75 5 4 500 35 0.292 57.01 299.25 6 4 500 35 0.291 57.08 301.75 7 500 25 0.107 95.03 299.05 8 500 25 0.106 94.90 299.65 9 2 500 25 0.106 74.07 302.15 10 2 500 25 0.107 73.97 302.35 11 4 500 25 0.105 57.05 297.25 12 4 500 25 0.105 57.02 305.25 -
[1] 邓国强. 常规爆炸空气冲击波参数海拔高度影响分析 [J]. 防护工程, 2019, 41(3): 26–32.DENG G Q. Analysis on the altitude effects of air shock wave parameters of conventional explosion [J]. Protective Engineering, 2019, 41(3): 26–32. [2] SILNIKOV M V, CHERNYSHOV M V, MIKHAYLIN A I. Blast wave parameters at diminished ambient pressure [J]. Acta Astronautica, 2015, 109: 235–240. DOI: 10.1016/j.actaastro.2014.12.007. [3] SACHS R G. The dependence of blast on ambient pressure and temperature: 466 [R]. Aberdeen Proving Ground, MD, USA: Ballistic Research Laboratories, 1944. [4] DEWEY J, SPERRAZZA J. The effect of atmospheric pressure and temperature on air shock: 721 [R]. Aberdeen Proving Ground, MD, USA: Ballistic Research Laboratories, 1950. [5] VELDMAN R L, NANSTEEL M W, CHEN C C T, et al. The effect of ambient pressure on blast reflected impulse and overpressure [J]. Experimental Techniques, 2017, 41(3): 227–236. DOI: 10.1007/s40799-017-0171-8. [6] 朱冠南, 王争论, 马佳佳, 等. 低压环境下膛口冲击波实验研究 [J]. 兵工学报, 2014, 35(6): 808–813. DOI: 10.3969/j.issn.1000-1093.2014.06.009.ZHU G N, WANG Z L, MA J J, et al. Research on muzzle shock wave in low pressure environment [J]. Acta Armamentarii, 2014, 35(6): 808–813. DOI: 10.3969/j.issn.1000-1093.2014.06.009. [7] IZADIFARD R A, FOROUTAN M. Blastwave parameters assessment at different altitude using numerical simulation [J]. Turkish Journal of Engineering and Environmental Sciences, 2010, 34(1): 25–41. DOI: 10.3906/muh-0911-39. [8] 李科斌, 李晓杰, 闫鸿浩, 等. 不同真空度下空中爆炸近场特性的数值模拟研究 [J]. 振动与冲击, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038.LI K B, LI X J, YAN H H, et al. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum [J]. Journal of Vibration and Shock, 2018, 37(17): 270–276. DOI: 10.13465/j.cnki.jvs.2018.17.038. [9] 聂源, 蒋建伟, 门建兵. 考虑环境温、湿度的球形装药爆炸冲击波参数计算模型 [J]. 爆炸与冲击, 2018, 38(4): 735–742. DOI: 10.11883/bzycj-2016-0340.NIE Y, JIANG J W, MEN J B. Calculation models for parameters of spherical charge blasting shock wave considering ambient temperature and humidity [J]. Explosion and Shock Waves, 2018, 38(4): 735–742. DOI: 10.11883/bzycj-2016-0340. [10] 庞春桥, 陶钢, 周佩杰, 等. 高原环境下爆炸冲击波参数的有效预测方法 [J]. 振动与冲击, 2018, 37(14): 221–226. DOI: 10.13465/j.cnki.jvs.2018.14.031.PANG C Q, TAO G, ZHOU P J, et al. Effective method for predicting the parameters of shock waves in plateau environment [J]. Journal of Vibration and Shock, 2018, 37(14): 221–226. DOI: 10.13465/j.cnki.jvs.2018.14.031. [11] 钱翼稷. 空气动力学 [M]. 北京: 北京航空航天大学出版社, 2004. [12] 侯俊亮, 蒋建伟, 门建兵, 等. 不同形状装药爆炸冲击波场及对靶板作用效应的数值模拟 [J]. 北京理工大学学报, 2013, 33(6): 556–561. DOI: 10.3969/j.issn.1001-0645.2013.06.002.HOU J L, JIANG J W, MEN J B, et al. Numerical simulation on blast wave field and deformation of thin plate under different-shape charge loading [J]. Transactions of Beijing Institute of Technology, 2013, 33(6): 556–561. DOI: 10.3969/j.issn.1001-0645.2013.06.002. [13] 杜红棉, 祖静, 马铁华, 等. 自由场传感器外形结构对冲击波测试的影响研究 [J]. 振动与冲击, 2011, 30(11): 85–89. DOI: 10.3969/j.issn.1000-3835.2011.11.018.DU H M, ZU J, MA T H, et al. Effect of mount configuration of free-field transducers on shock wave measurement [J]. Journal of Vibration and Shock, 2011, 30(11): 85–89. DOI: 10.3969/j.issn.1000-3835.2011.11.018. [14] BAKER W E, COX P A, WESTINE P S, et al. Explosion hazards and evaluation [M]. Amsterdam, Netherlands: Elsevier Scientific Pub. Co. , 1983. [15] KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. Berlin, Germany: Springer-Verlag, 2013. DOI: 10.1007/978-3-642-86682-1. [16] ISMAIL M M, MURRAY S G. Study of the blast wave parameters from small scale explosions [J]. Propellants, Explosives, Pyrotechnics, 1993, 18(1): 11–17. DOI: 10.1002/prep.19930180103. [17] 张立恒, 王少龙, 颜澎, 等. 爆炸冲击波测试数据处理方法研究 [J]. 弹箭与制导学报, 2010, 30(3): 107–110. DOI: 10.3969/j.issn.1673-9728.2010.03.032.ZHANG L H, WANG S L, YAN P, et al. Study on blast wave test data processing methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(3): 107–110. DOI: 10.3969/j.issn.1673-9728.2010.03.032. [18] 中国工程物理研究院, 第二炮兵驻中国工程物理研究院型号办, 第二炮兵装备研究院, 等. 面杀伤导弹战斗部静爆威力试验方法: 第3部分: 冲击波超压测试: GJB 6390.3—2008 [S]. 北京: 中国人民解放军总装备部, 2008. [19] SWISDAK JR M M. Explosion effects and properties: part 1: explosion effects in air [R]. Silver Spring, MD, USA: Naval Surface Weapons Center White Oak Lab, 1975.