偏心起爆对战斗部装药能量分配增益的影响

邓海 全嘉林 梁争峰

邓海, 全嘉林, 梁争峰. 偏心起爆对战斗部装药能量分配增益的影响[J]. 爆炸与冲击, 2022, 42(5): 052201. doi: 10.11883/bzycj-2021-0280
引用本文: 邓海, 全嘉林, 梁争峰. 偏心起爆对战斗部装药能量分配增益的影响[J]. 爆炸与冲击, 2022, 42(5): 052201. doi: 10.11883/bzycj-2021-0280
DENG Hai, QUAN Jialin, LIANG Zhengfeng. Influence of eccentric initiation on energy distribution gain of a warhead charge[J]. Explosion And Shock Waves, 2022, 42(5): 052201. doi: 10.11883/bzycj-2021-0280
Citation: DENG Hai, QUAN Jialin, LIANG Zhengfeng. Influence of eccentric initiation on energy distribution gain of a warhead charge[J]. Explosion And Shock Waves, 2022, 42(5): 052201. doi: 10.11883/bzycj-2021-0280

偏心起爆对战斗部装药能量分配增益的影响

doi: 10.11883/bzycj-2021-0280
详细信息
    作者简介:

    邓 海(1990- ),男,博士研究生,hai179590@163.com

    通讯作者:

    梁争峰(1972- ),男,博士,研究员,2042lzf@sohu.com

  • 中图分类号: O389

Influence of eccentric initiation on energy distribution gain of a warhead charge

  • 摘要: 为研究不同方式的偏心起爆对炸药装药能量分配及增益的影响,建立了偏心起爆战斗部的计算模型,通过局部装填比这一变量,给出了偏心起爆战斗部破片的初速计算公式。采用数值模拟与试验验证结合的方法,对六分位条件下不同偏心起爆方式的破片速度增益和能量增益进行了对比,得出以中心起爆为基准,分别以邻位双线、连位三线、间位双线、偏心单线方式起爆,定向方位内破片的速度增益依次增大;邻位双线起爆时,目标方向破片速度增益达25.47%,定向区域破片动能占总能量的24.57%,能量增益超过40%。
  • 图  1  邻位两点偏心起爆后爆轰波相互作用

    Figure  1.  Interaction between two detonation waves produced by two-point eccentric initiation with an interval of 60°

    图  2  偏心起爆弹轴中心截面示意图

    Figure  2.  Schematic diagram of the eccentric detonator shaft center section

    图  3  战斗部模型

    Figure  3.  The warhead model

    图  4  六分圆起爆方式

    Figure  4.  Initiation modes of sextant circle

    图  5  不同起爆方式下爆轰波的传播过程

    Figure  5.  Propagation processes of detonation waves with different initiation modes

    图  6  不同起爆方式下,爆轰波压力峰值随方位角分布曲线

    Figure  6.  Detonation wave pressure peak varying with azimuth angle under different initiation modes

    图  7  不同起爆方式下破片速度随方位角的分布

    Figure  7.  Fragment velocity varying with azimuth angle under different initiation modes

    图  8  不同起爆方式下动能分配比随破片方位角的变化

    Figure  8.  Kinetic energy distribution ratio varying with azimuth angle under different initiation modes

    图  9  试验样弹的结构设计

    Figure  9.  Structure design of test sample projectile

    图  10  靶场布局

    Figure  10.  Shooting range layout

    图  11  样弹1爆轰过程的高速摄影

    Figure  11.  High-speed photography of detonation process of test bomb 1

    图  12  邻位双线起爆过程的状态

    Figure  12.  The states of the initiation process of two wires in adjacent positions

    表  1  定向区不同方位破片速度

    Table  1.   Fragment velocity in different directions of orientation area

    起爆方式目标方位方位角30°定向区内平均
    初速/(m·s−1)速度增益/%初速/(m·s−1)速度增益/%初速/(m·s−1)速度增益/%
    中心起爆2113.02113.02113.0
    偏心单线2487.617.722267.6 7.322397.613.47
    邻位双线2651.325.472389.313.082568.421.55
    间位双线2572.221.732313.0 9.472424.914.76
    连位三线2583.322.252319.5 9.772441.315.54
    下载: 导出CSV

    表  2  不同区域内破片总动能的分布情况

    Table  2.   Total kinetic energy distribution of fragments in different regions

    起爆方式0~30°区域 30°~90°区域 90°~150°区域 150°~180°区域
    动能占比/%动能增益/% 动能占比/%动能增益/% 动能占比/%动能增益/% 动能占比/%动能增益/%
    中心起爆16.6733.3333.3316.67
    偏心单线22.1232.7233.640.9328.06−15.8116.17 −2.99
    邻位双线24.5747.4234.072.2226.99−19.0214.36−13.85
    间位双线22.8336.9836.659.9626.16−21.5114.35−13.92
    连位三线23.1438.8435.807.4126.52−20.4314.54−12.78
    下载: 导出CSV

    表  3  局部装填比随方位角的拟合关系式

    Table  3.   Fitting relationship between local loading ratio and azimuth angle

    起爆方式$ \beta ' $
    偏心单线$ \beta (1.015 + 0.451{\text{ }}\cos \theta ) $
    邻位双线$ \beta ( - 0.207 + 1.923\cos \theta ) $
    间位双线$ \beta (0.009 + 1.511{\text{ }}\cos \theta ) $
    连位三线$ \beta (1.252 + 0.228{\text{ }}\cos \theta ) $
    下载: 导出CSV

    表  4  样弹起爆方式

    Table  4.   Initiation modes of test bombs

    样弹起爆方式轴向起爆点数
    1连位三线轴向中心一点
    2间位两线
    3邻位两线
    4偏心单线
    5中心起爆
    下载: 导出CSV

    表  5  不同周向起爆方式下样弹壳体速度分布

    Table  5.   Velocity distributions of tested bomb shells under different initiation modes

    样弹 起爆方式壳体速度/(m∙s−1)
    靶板1方向 靶板2、6方向 靶板3、5方向 靶板4方向
    试验理论计算 试验 试验 试验
    1连位三线794.6849.9708.0637.5604.2
    2间位两线784.3860.4687.3649.4606.4
    3邻位两线806.8909.9703.4632.2602.8
    4偏心单线763.2846.0685.2654.3590.3
    5中心起爆681.5707.3 681.5
    下载: 导出CSV

    表  6  不同起爆方式不同方位区域动能分配对比

    Table  6.   Total kinetic energy distribution in different regions under different initiation modes

    样弹起爆方式动能占比/%
    靶板1(−30°~30°) 靶板2(30°~90°) 靶板3(90°~150°) 靶板4(−150°~150°)
    试验模拟 试验模拟 试验模拟 试验模拟
    1连位三线22.4523.1417.8317.9014.4513.2612.9814.54
    2间位两线22.2022.8317.0518.3315.2213.0813.2714.35
    3邻位两线23.2224.5717.6517.0314.2613.4912.9614.36
    4偏心单线21.3722.1217.2216.8215.7014.0312.7816.17
    5中心起爆16.67
    下载: 导出CSV

    表  7  不同起爆方式下不同方位区域的动能增益

    Table  7.   Kinetic energy gain in different regions under different initiation modes

    样弹起爆方式动能增益/%
    靶板1(−30°~30°) 靶板2(30°~90°) 靶板3(90°~150°) 靶板4(−150°~150°)
    试验模拟 试验模拟 试验模拟 试验模拟
    1连位三线35.938.87.97.4−12.5−20.4−21.4−12.7
    2间位两线32.436.91.79.9 −9.2−21.5−20.8−13.9
    3邻位两线40.247.46.52.2−13.9−19.0−21.7−13.9
    4偏心单线25.429.11.11.5 −7.8−15.1−24.9 −1.8
    下载: 导出CSV

    表  8  壳体速度

    Table  8.   Shell velocity

    起爆方式壳体速度/(m∙s−1)
    靶板1 靶板2、6 靶板3、5 靶板4
    模拟试验 模拟试验 模拟试验 模拟试验
    连位双线849.1794.6742.6708.0703.0637.5654.6604.2
    间位三线859.3784.3766.8687.3689.8649.4652.3606.4
    邻位双线873.3806.8762.0703.4683.9632.2650.8602.8
    偏心单线815.0763.2728.7685.2709.6654.3637.6590.3
    下载: 导出CSV
  • [1] 王宝成, 袁宝慧. 防空反导破片杀伤战斗部现状与发展 [J]. 四川兵工学报, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.

    WANG B C, YUAN B H. Research states and trend of fragment warhead for air-defense and anti-missile [J]. Journal of Sichuan Ordnance, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.
    [2] 冯顺山, 蒋建伟, 何顺录, 等. 偏轴心起爆破片初速径向分布规律研究 [J]. 兵工学报, 1993(S1): 12–16.

    FENG S S, JIANG J W, HE S L, et al. Study on radial distribution of initial velocity of off axis bursting disc [J]. Acta Armamentarii, 1993(S1): 12–16.
    [3] RESNYANSKY A D, WILDEGGER-GAISSMAIER A E, KATSELIS G. Directional fragmentation warheads: a theoretical and experimental investigation [C]//Proceedings of the 18th International Symposium on Ballistics. San Antonio, TX, USA, 1999: 543–550.
    [4] KENNEDY D R. A historical review of aimable air defense warhead technology [C]//Proceedings of the 18th International Symposium on Ballistics. San Antonio, TX, USA, 1999: 618–625.
    [5] HELD M. Velocity enhanced warheads [J]. Journal of Explosives and Propellants, 2001, 17(2): 1–12.
    [6] 黄静, 孔凡勋, 袁晋, 等. 多点偏心起爆对破片速度增益的影响 [J]. 现代防御技术, 2011, 39(6): 37–42. DOI: 10.3969/j.issn.1009-086x.2011.06.008.

    HUANG J, KONG F X, YUAN J, et al. Influence of multi-spots off-axis initiation on fragment velocity gain [J]. Modern Defence Technology, 2011, 39(6): 37–42. DOI: 10.3969/j.issn.1009-086x.2011.06.008.
    [7] 王树山, 马晓飞, 隋树元, 等. 偏心多点起爆战斗部破片飞散实验研究 [J]. 北京理工大学学报, 2001, 21(2): 177–179. DOI: 10.3969/j.issn.1001-0645.2001.02.008.

    WANG S S, MA X F, SUI S Y, et al. Experimental research on fragments dispersion of the warhead under asymmetrical multi-spots initiation [J]. Journal of Beijing Institute of Technology, 2001, 21(2): 177–179. DOI: 10.3969/j.issn.1001-0645.2001.02.008.
    [8] 刘琛, 李元, 李燕华. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.

    LIU C, LI Y, LI Y H. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materials, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.
    [9] LI Y, LI Y H, LIU C, et al. The initiation parameter of detonation wave aiming warhead [J]. Chinese Journal of Energetic Materials, 2016, 24(9): 915–921. DOI: 10.11943/j.issn.1006-9941.2016.09.017.
    [10] 卢芳云, 李翔宇, 林玉亮. 战斗部结构与原理 [M]. 北京: 科学出版社, 2009: 112–129.
    [11] 王马法, 卢芳云, 李翔宇. 爆轰波斜冲击作用下破片飞散特性研究 [J]. 国防科技大学学报, 2013, 35(1): 60–64. DOI: 10.3969/j.issn.1001-2486.2013.01.012.

    WANG M F, LU F Y, LI X Y. Research on the projection characteristics of fragments under the loading of the oblique shock wave [J]. Journal of National University of Defense Technology, 2013, 35(1): 60–64. DOI: 10.3969/j.issn.1001-2486.2013.01.012.
    [12] 王力, 韩峰, 陈放, 等. 偏心对称起爆战斗部破片初速的增益 [J]. 爆炸与冲击, 2016, 36(1): 69–74. DOI: 10.11883/1001-1455(2016)01-0069-06.

    WANG L, HAN F, CHEN F, et al. Fragments’ velocity of eccentric warhead with double symmetric detonators [J]. Explosion and Shock Waves, 2016, 36(1): 69–74. DOI: 10.11883/1001-1455(2016)01-0069-06.
    [13] 李元. 偏心起爆定向战斗部若干理论与技术研究 [D]. 北京: 北京理工大学, 2016.

    LI Y. Study on theories and technologies of asymmetrically initiated warhead [D]. Beijing, China: Beijing Institute of Technology, 2016.
    [14] 沈慧铭. 多点起爆方式作用机理及其在战斗部中的应用研究 [D]. 南京: 南京理工大学, 2018.

    SHEN H M. Research on action mechanism of multi-point initiation way and its application in warhead [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2018.
    [15] 李翔宇, 李振铎, 梁民族. D型战斗部破片飞散性及威力场快速计算 [J]. 爆炸与冲击, 2019, 39(4): 043301. DOI: 10.11883/bzycj-2017-0420.

    LI X Y, LI Z D, LIANG M Z. Dispersion properties and rapid calculation of fragment force field of D-shaped fragmentation warhead [J]. Explosion and Shock Waves, 2019, 39(4): 043301. DOI: 10.11883/bzycj-2017-0420.
    [16] 彭军, 袁宝慧, 孙兴昀, 等. 立方形钨破片穿甲效应的数值模拟与试验 [J]. 爆破器材, 2017, 46(5): 23–28. DOI: 10.3969/j.issn.1001-8352.2017.05.005.

    PENG J, YUN B H, SUN X Y, et al. Numerical simulation and experiment for penetrating performance of cubic tungsten fragment [J]. Explosive Materials, 2017, 46(5): 23–28. DOI: 10.3969/j.issn.1001-8352.2017.05.005.
    [17] 李刚, 刘荣忠, 郭锐. 爆炸成抛物面型弹丸战斗部的仿真研究 [J]. 计算机仿真, 2011, 28(11): 1–4; 18. DOI: 10.3969/j.issn.1006-9348.2011.11.001.

    LI G, LIU R Z, GUO R. Simulation on parabolic liner forming process [J]. Computer Simulation, 2011, 28(11): 1–4; 18. DOI: 10.3969/j.issn.1006-9348.2011.11.001.
    [18] 周翔. 爆炸成型弹丸战斗部的相关技术研究[D]. 南京: 解放军理工大学工程兵工程学院, 2006.

    ZHOU X. Technological researches on explosive formed projectiles [D]. Nanjing, Jiangsu, China: Engineering Institute of Engineering Institute of Engineer Corps of PLA University of Science and Technology, 2006.
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  212
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 修回日期:  2021-11-11
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回