Influence of eccentric initiation on energy distribution gain of a warhead charge
-
摘要: 为研究不同方式的偏心起爆对炸药装药能量分配及增益的影响,建立了偏心起爆战斗部的计算模型,通过局部装填比这一变量,给出了偏心起爆战斗部破片的初速计算公式。采用数值模拟与试验验证结合的方法,对六分位条件下不同偏心起爆方式的破片速度增益和能量增益进行了对比,得出以中心起爆为基准,分别以邻位双线、连位三线、间位双线、偏心单线方式起爆,定向方位内破片的速度增益依次增大;邻位双线起爆时,目标方向破片速度增益达25.47%,定向区域破片动能占总能量的24.57%,能量增益超过40%。Abstract: In order to study the influence of different ways of eccentric initiation on the energy distribution and the gain of explosive charge, a theoretical model of eccentric initiation warhead is established, and the concept of energy distribution center is introduced. By introducing the variable of local loading ratio, the calculation formula of initial velocity of fragments of eccentric initiation warhead is formulated. In this paper, the velocity gain of fragments and energy gain with different initiation modes under the sextile condition are compared and analyzed by using numerical simulation and experimental verification. The results show that at the directional orientation, the maximum pressure at the edge of multi-line eccentric initiation is significantly greater than that of eccentric single line initiation and central initiation, and the detonation pressure at the edge of charge increases from 23.5 GPa of central initiation to 36.2 GPa of asymmetrical two lines 60° initiation; The distribution law of fragment velocity in the direction of 0°−30° is similar to the distribution law of maximum pressure at the edge of charge. Taking the central initiation as the benchmark, the relationship of velocity gain with the directional orientation takes the following relation: asymmetrical two lines 60°>asymmetrical three lines 120°>asymmetrical two lines 120°>asymmetrical one line. When asymmetrical two lines 60° initiation, the fragment velocity gain in the target direction is 25.47%. Finally, through the verification of experiments and theoretical calculation, it is concluded that the energy proportion in the directional area of adjacent asymmetrical two lines 60° is the highest, with the energy gain in this area being 47.42%; followed by asymmetrical three lines 120einitiation, with the energy gain being 38.84%; then symmetrical two lines 1202initiation, with the energy gain being 36.98%; and finally asymmetrical one line initiation, with the energy gain in the directional area being 32.72%.
-
Key words:
- eccentric initiation /
- energy distribution /
- energy gain /
- initiation mode /
- fragment velocity
-
表 1 定向区不同方位破片速度
Table 1. Fragment velocity in different directions of orientation area
起爆方式 目标方位 方位角30° 定向区内平均 初速/(m·s−1) 速度增益/% 初速/(m·s−1) 速度增益/% 初速/(m·s−1) 速度增益/% 中心起爆 2113.0 2113.0 2113.0 偏心单线 2487.6 17.72 2267.6 7.32 2397.6 13.47 邻位双线 2651.3 25.47 2389.3 13.08 2568.4 21.55 间位双线 2572.2 21.73 2313.0 9.47 2424.9 14.76 连位三线 2583.3 22.25 2319.5 9.77 2441.3 15.54 表 2 不同区域内破片总动能的分布情况
Table 2. Total kinetic energy distribution of fragments in different regions
起爆方式 0~30°区域 30°~90°区域 90°~150°区域 150°~180°区域 动能占比/% 动能增益/% 动能占比/% 动能增益/% 动能占比/% 动能增益/% 动能占比/% 动能增益/% 中心起爆 16.67 33.33 33.33 16.67 偏心单线 22.12 32.72 33.64 0.93 28.06 −15.81 16.17 −2.99 邻位双线 24.57 47.42 34.07 2.22 26.99 −19.02 14.36 −13.85 间位双线 22.83 36.98 36.65 9.96 26.16 −21.51 14.35 −13.92 连位三线 23.14 38.84 35.80 7.41 26.52 −20.43 14.54 −12.78 表 3 局部装填比随方位角的拟合关系式
Table 3. Fitting relationship between local loading ratio and azimuth angle
起爆方式 $ \beta ' $ 偏心单线 $ \beta (1.015 + 0.451{\text{ }}\cos \theta ) $ 邻位双线 $ \beta ( - 0.207 + 1.923\cos \theta ) $ 间位双线 $ \beta (0.009 + 1.511{\text{ }}\cos \theta ) $ 连位三线 $ \beta (1.252 + 0.228{\text{ }}\cos \theta ) $ 表 4 样弹起爆方式
Table 4. Initiation modes of test bombs
样弹 起爆方式 轴向起爆点数 1 连位三线 轴向中心一点 2 间位两线 3 邻位两线 4 偏心单线 5 中心起爆 表 5 不同周向起爆方式下样弹壳体速度分布
Table 5. Velocity distributions of tested bomb shells under different initiation modes
样弹 起爆方式 壳体速度/(m∙s−1) 靶板1方向 靶板2、6方向 靶板3、5方向 靶板4方向 试验 理论计算 试验 试验 试验 1 连位三线 794.6 849.9 708.0 637.5 604.2 2 间位两线 784.3 860.4 687.3 649.4 606.4 3 邻位两线 806.8 909.9 703.4 632.2 602.8 4 偏心单线 763.2 846.0 685.2 654.3 590.3 5 中心起爆 681.5 707.3 681.5 表 6 不同起爆方式不同方位区域动能分配对比
Table 6. Total kinetic energy distribution in different regions under different initiation modes
样弹 起爆方式 动能占比/% 靶板1(−30°~30°) 靶板2(30°~90°) 靶板3(90°~150°) 靶板4(−150°~150°) 试验 模拟 试验 模拟 试验 模拟 试验 模拟 1 连位三线 22.45 23.14 17.83 17.90 14.45 13.26 12.98 14.54 2 间位两线 22.20 22.83 17.05 18.33 15.22 13.08 13.27 14.35 3 邻位两线 23.22 24.57 17.65 17.03 14.26 13.49 12.96 14.36 4 偏心单线 21.37 22.12 17.22 16.82 15.70 14.03 12.78 16.17 5 中心起爆 16.67 表 7 不同起爆方式下不同方位区域的动能增益
Table 7. Kinetic energy gain in different regions under different initiation modes
样弹 起爆方式 动能增益/% 靶板1(−30°~30°) 靶板2(30°~90°) 靶板3(90°~150°) 靶板4(−150°~150°) 试验 模拟 试验 模拟 试验 模拟 试验 模拟 1 连位三线 35.9 38.8 7.9 7.4 −12.5 −20.4 −21.4 −12.7 2 间位两线 32.4 36.9 1.7 9.9 −9.2 −21.5 −20.8 −13.9 3 邻位两线 40.2 47.4 6.5 2.2 −13.9 −19.0 −21.7 −13.9 4 偏心单线 25.4 29.1 1.1 1.5 −7.8 −15.1 −24.9 −1.8 表 8 壳体速度
Table 8. Shell velocity
起爆方式 壳体速度/(m∙s−1) 靶板1 靶板2、6 靶板3、5 靶板4 模拟 试验 模拟 试验 模拟 试验 模拟 试验 连位双线 849.1 794.6 742.6 708.0 703.0 637.5 654.6 604.2 间位三线 859.3 784.3 766.8 687.3 689.8 649.4 652.3 606.4 邻位双线 873.3 806.8 762.0 703.4 683.9 632.2 650.8 602.8 偏心单线 815.0 763.2 728.7 685.2 709.6 654.3 637.6 590.3 -
[1] 王宝成, 袁宝慧. 防空反导破片杀伤战斗部现状与发展 [J]. 四川兵工学报, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.WANG B C, YUAN B H. Research states and trend of fragment warhead for air-defense and anti-missile [J]. Journal of Sichuan Ordnance, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007. [2] 冯顺山, 蒋建伟, 何顺录, 等. 偏轴心起爆破片初速径向分布规律研究 [J]. 兵工学报, 1993(S1): 12–16.FENG S S, JIANG J W, HE S L, et al. Study on radial distribution of initial velocity of off axis bursting disc [J]. Acta Armamentarii, 1993(S1): 12–16. [3] RESNYANSKY A D, WILDEGGER-GAISSMAIER A E, KATSELIS G. Directional fragmentation warheads: a theoretical and experimental investigation [C]//Proceedings of the 18th International Symposium on Ballistics. San Antonio, TX, USA, 1999: 543–550. [4] KENNEDY D R. A historical review of aimable air defense warhead technology [C]//Proceedings of the 18th International Symposium on Ballistics. San Antonio, TX, USA, 1999: 618–625. [5] HELD M. Velocity enhanced warheads [J]. Journal of Explosives and Propellants, 2001, 17(2): 1–12. [6] 黄静, 孔凡勋, 袁晋, 等. 多点偏心起爆对破片速度增益的影响 [J]. 现代防御技术, 2011, 39(6): 37–42. DOI: 10.3969/j.issn.1009-086x.2011.06.008.HUANG J, KONG F X, YUAN J, et al. Influence of multi-spots off-axis initiation on fragment velocity gain [J]. Modern Defence Technology, 2011, 39(6): 37–42. DOI: 10.3969/j.issn.1009-086x.2011.06.008. [7] 王树山, 马晓飞, 隋树元, 等. 偏心多点起爆战斗部破片飞散实验研究 [J]. 北京理工大学学报, 2001, 21(2): 177–179. DOI: 10.3969/j.issn.1001-0645.2001.02.008.WANG S S, MA X F, SUI S Y, et al. Experimental research on fragments dispersion of the warhead under asymmetrical multi-spots initiation [J]. Journal of Beijing Institute of Technology, 2001, 21(2): 177–179. DOI: 10.3969/j.issn.1001-0645.2001.02.008. [8] 刘琛, 李元, 李燕华. 偏心起爆方式对棱柱形定向战斗部破片飞散规律的影响 [J]. 含能材料, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011.LIU C, LI Y, LI Y H. Influence of eccentric initiation ways on fragment dispersion rule of prismatic aimable warhead [J]. Chinese Journal of Energetic Materials, 2017, 25(1): 63–68. DOI: 10.11943/j.issn.1006-9941.2017.01.011. [9] LI Y, LI Y H, LIU C, et al. The initiation parameter of detonation wave aiming warhead [J]. Chinese Journal of Energetic Materials, 2016, 24(9): 915–921. DOI: 10.11943/j.issn.1006-9941.2016.09.017. [10] 卢芳云, 李翔宇, 林玉亮. 战斗部结构与原理 [M]. 北京: 科学出版社, 2009: 112–129. [11] 王马法, 卢芳云, 李翔宇. 爆轰波斜冲击作用下破片飞散特性研究 [J]. 国防科技大学学报, 2013, 35(1): 60–64. DOI: 10.3969/j.issn.1001-2486.2013.01.012.WANG M F, LU F Y, LI X Y. Research on the projection characteristics of fragments under the loading of the oblique shock wave [J]. Journal of National University of Defense Technology, 2013, 35(1): 60–64. DOI: 10.3969/j.issn.1001-2486.2013.01.012. [12] 王力, 韩峰, 陈放, 等. 偏心对称起爆战斗部破片初速的增益 [J]. 爆炸与冲击, 2016, 36(1): 69–74. DOI: 10.11883/1001-1455(2016)01-0069-06.WANG L, HAN F, CHEN F, et al. Fragments’ velocity of eccentric warhead with double symmetric detonators [J]. Explosion and Shock Waves, 2016, 36(1): 69–74. DOI: 10.11883/1001-1455(2016)01-0069-06. [13] 李元. 偏心起爆定向战斗部若干理论与技术研究 [D]. 北京: 北京理工大学, 2016.LI Y. Study on theories and technologies of asymmetrically initiated warhead [D]. Beijing, China: Beijing Institute of Technology, 2016. [14] 沈慧铭. 多点起爆方式作用机理及其在战斗部中的应用研究 [D]. 南京: 南京理工大学, 2018.SHEN H M. Research on action mechanism of multi-point initiation way and its application in warhead [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2018. [15] 李翔宇, 李振铎, 梁民族. D型战斗部破片飞散性及威力场快速计算 [J]. 爆炸与冲击, 2019, 39(4): 043301. DOI: 10.11883/bzycj-2017-0420.LI X Y, LI Z D, LIANG M Z. Dispersion properties and rapid calculation of fragment force field of D-shaped fragmentation warhead [J]. Explosion and Shock Waves, 2019, 39(4): 043301. DOI: 10.11883/bzycj-2017-0420. [16] 彭军, 袁宝慧, 孙兴昀, 等. 立方形钨破片穿甲效应的数值模拟与试验 [J]. 爆破器材, 2017, 46(5): 23–28. DOI: 10.3969/j.issn.1001-8352.2017.05.005.PENG J, YUN B H, SUN X Y, et al. Numerical simulation and experiment for penetrating performance of cubic tungsten fragment [J]. Explosive Materials, 2017, 46(5): 23–28. DOI: 10.3969/j.issn.1001-8352.2017.05.005. [17] 李刚, 刘荣忠, 郭锐. 爆炸成抛物面型弹丸战斗部的仿真研究 [J]. 计算机仿真, 2011, 28(11): 1–4; 18. DOI: 10.3969/j.issn.1006-9348.2011.11.001.LI G, LIU R Z, GUO R. Simulation on parabolic liner forming process [J]. Computer Simulation, 2011, 28(11): 1–4; 18. DOI: 10.3969/j.issn.1006-9348.2011.11.001. [18] 周翔. 爆炸成型弹丸战斗部的相关技术研究[D]. 南京: 解放军理工大学工程兵工程学院, 2006.ZHOU X. Technological researches on explosive formed projectiles [D]. Nanjing, Jiangsu, China: Engineering Institute of Engineering Institute of Engineer Corps of PLA University of Science and Technology, 2006.