轴向增强战斗部端部惰性填充物对端部破片飞散特性的影响

李国杰 王成龙 郭志威 李响 黄广炎

李国杰, 王成龙, 郭志威, 李响, 黄广炎. 轴向增强战斗部端部惰性填充物对端部破片飞散特性的影响[J]. 爆炸与冲击, 2022, 42(8): 082202. doi: 10.11883/bzycj-2021-0281
引用本文: 李国杰, 王成龙, 郭志威, 李响, 黄广炎. 轴向增强战斗部端部惰性填充物对端部破片飞散特性的影响[J]. 爆炸与冲击, 2022, 42(8): 082202. doi: 10.11883/bzycj-2021-0281
LI Guojie, WANG Chenglong, GUO Zhiwei, LI Xiang, HUANG Guangyan. Influence of end non-reactive fillers on the dispersion of the fragments in an axially-enhanced warhead[J]. Explosion And Shock Waves, 2022, 42(8): 082202. doi: 10.11883/bzycj-2021-0281
Citation: LI Guojie, WANG Chenglong, GUO Zhiwei, LI Xiang, HUANG Guangyan. Influence of end non-reactive fillers on the dispersion of the fragments in an axially-enhanced warhead[J]. Explosion And Shock Waves, 2022, 42(8): 082202. doi: 10.11883/bzycj-2021-0281

轴向增强战斗部端部惰性填充物对端部破片飞散特性的影响

doi: 10.11883/bzycj-2021-0281
基金项目: 航天科技创新基金;航天科技钱学森青年创新基金
详细信息
    作者简介:

    李国杰(1979- ),男,博士研究生,高级工程师,liguojie7788@126.com

    通讯作者:

    王成龙(1989- ),男,博士,工程师,350229858@qq.com

  • 中图分类号: O389

Influence of end non-reactive fillers on the dispersion of the fragments in an axially-enhanced warhead

  • 摘要: 在当前破片战斗部动态毁伤场设计中,中心盲区效应被视为影响战斗部毁伤效率提高的关键因素。轴向增强战斗部作为消除战斗部动态中心盲区的重要手段,越来越受到相关研究人员的重视。本文中基于光滑粒子流体力学计算方法,建立了一系列轴向增强战斗部(端部分别含有惰性聚氨酯填充物、尼龙填充物和爆炸填充物)在爆炸载荷作用下的破碎和碎片散布过程的数值模型,并用于研究战斗部前端填充物特性对壳体动态响应的影响。数值模拟结果表明,填充物对战斗部前部破片的速度影响显著,但对破片飞散角度影响较弱。通过比较特定碎片的速度历史曲线,分析了惰性填料对碎片速度的影响机理。研究结果表明,聚氨酯泡沫填充物可以显著延缓爆炸冲击波对前破片的加速过程,并在一定程度上降低爆炸载荷,尼龙填充物可以在一定程度上降低前向破片和侧向破片的加速度,从而表明爆炸载荷被引导均匀分布在末端位置周围。结合战斗部自身的牵连速度,使用低密度和低质量填料代替头部装药具有相同的动态毁伤效果,可以提高轴向增强战斗部的能量利用效率。
  • 图  1  不同战斗部的毁伤区域

    Figure  1.  Damage regions by different warheads

    图  2  轴向增强战斗部

    Figure  2.  An axially-enhanced warhead

    图  3  轴向增强战斗部数值计算模型

    Figure  3.  The numerical model of an axially-enhanced warhead

    图  4  端部无填充战斗部壳体的破碎过程

    Figure  4.  Fragmentation process of the shell of the warhead with a non-filled end

    图  5  端部填充聚氨酯战斗部壳体破碎过程

    Figure  5.  Fragmentation process of the warhead with an end filled with polyurethane

    图  6  端部填充尼龙战斗部壳体破碎过程

    Figure  6.  Fragmentation process of the warhead with an end filled with nylon

    图  7  端部填充炸药战斗部壳体破碎过程

    Figure  7.  Fragmentation process of the warhead with an end filled with explosive

    图  8  轴向增强战斗部在不同轴向填充材料下的端部破片速度分布

    Figure  8.  The fragment velocity distributions of the axially-enhanced warheads filled with different materials

    图  9  不同轴向填充物下战斗部轴向增强部分破片的飞散角度

    Figure  9.  Projection angles of fragments from the axially-enhanced part of the warhead axially filled with different materials

    图  10  战斗部典型破片位置示意图

    Figure  10.  The typical positions of the fragments from the warhead

    图  11  典型位置破片速度时间曲线

    Figure  11.  Velocity-time curves of the fragments at typical positions

  • [1] 赵耘晨. 前向增强杀爆弹前置破片初速及飞散方向研究 [D]. 南京: 南京理工大学, 2016: 1–9.

    ZHAO Y C. The study of fragment initial velocity and scattering direction of front fragment on forward enhanced lethal he projectile [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2016: 1–9.
    [2] HUANG G Y, LI W, FENG S S. Fragment velocity distribution of cylindrical rings under eccentric point initiation [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 215–220. DOI: 10.1002/prep.201400180.
    [3] NING J G, DUAN Y, XU X Z, et al. Velocity characteristics of fragments from prismatic casing under internal explosive loading [J]. International Journal of Impact Engineering, 2017, 109: 29–38. DOI: 10.1016/j.ijimpeng.2017.05.018.
    [4] DHOTE K D, MURTHY K P S, RAJAN K M, et al. Directional warhead design methodology for a tailored fragment beam [J]. Central European Journal of Energetic Materials, 2015, 12(4): 637–649.
    [5] DING L L, LI Z D, LIANG M Z, et al. The dispersion rule of fragments about the asymmetric shell [J]. Shock and Vibration, 2017, 2017: 9810978. DOI: 10.1155/2017/9810978.
    [6] 李超, 李向东, 陈志斌, 等. 前向增强杀伤榴弹对人员目标杀伤威力分析 [J]. 兵工学报, 2014, 35(7): 1119–1123. DOI: 10.3969/j.issn.1000-1093.2014.07.028.

    LI C, LI X D, CHEN Z B, et al. Lethality of forward enhanced lethal he projectile against personnel targets [J]. Acta Armamentarii, 2014, 35(7): 1119–1123. DOI: 10.3969/j.issn.1000-1093.2014.07.028.
    [7] 石志彬, 高敏, 米双山, 等. 前向战斗部破片散布均匀性研究 [J]. 弹箭与制导学报, 2014, 34(1): 95-97; 138. DOI: 10.3969/j.issn.1673-9728.2014.01.024.

    SHI Z B, GAO M, MI S S, et al. Study on fragment dispersion uniformity of forward-firing warhead [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(1): 95-97; 138. DOI: 10.3969/j.issn.1673-9728.2014.01.024.
    [8] 崔俊杰, 姜建东, 牛新立, 等. 轴向预制破片初速影响因素的研究 [J]. 弹箭与制导学报, 2014, 34(2): 84-86; 97. DOI: 10.3969/j.issn.1673-9728.2014.02.023.

    CUI J J, JIANG J D, NIU X L, et al. The research on impacting factors of axial preformed fragment velocity [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(2): 84-86; 97. DOI: 10.3969/j.issn.1673-9728.2014.02.023.
    [9] 郭子云, 赵太勇, 陈智刚. 战斗部端面预制破片威力性能影响的数值仿真 [J]. 计算机仿真, 2015, 32(3): 33–37. DOI: 10.3969/j.issn.1006-9348.2015.03.008.

    GUO Z Y, ZHAO T Y, CHEN Z G. Numerical simulation of lethality influence of warhead end premade fragment [J]. Computer Simulation, 2015, 32(3): 33–37. DOI: 10.3969/j.issn.1006-9348.2015.03.008.
    [10] 李明星, 王志军, 黄阳洋, 等. 不同形状轴向预制破片的飞散特性研究 [J]. 兵器装备工程学报, 2017, 38(12): 65–69. DOI: 10.11809/scbgxb2017.12.016.

    LI M X, WANG Z J, HUANG Y Y, et al. Study on the scattering characteristics of different shape axial prefabricated fragment [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 65–69. DOI: 10.11809/scbgxb2017.12.016.
    [11] 谭振, 陈鹏万, 周强, 等. 战斗部轴向威力的增强 [J]. 爆炸与冲击, 2018, 38(4): 876–882. DOI: 10.11883/bzycj-2016-0342.

    TAN Z, CHEN P W, ZHOU Q, et al. Enhancement of axial lethality of warhead [J]. Explosion and Shock Waves, 2018, 38(4): 876–882. DOI: 10.11883/bzycj-2016-0342.
    [12] JOHNSON G R, COOK W H . A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 12–21.
    [13] 陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 69–74. DOI: 10.11883/1001-1455(2005)05-0451-06.

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 69–74. DOI: 10.11883/1001-1455(2005)05-0451-06.
    [14] DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook [M]. Livermore, CA, USA: Lawrence Livermore National Laboratory, 1985.
    [15] DOBRATZ B M. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants [R] . Livermore, CA, USA: Lawrence Livermore National Laboratory, 1981.
    [16] 恽寿榕, 涂侯杰, 梁德寿, 等. 爆炸力学计算方法[M]. 北京: 北京理工大学出版社, 1995.

    YUN S R, TU H J, JIANG D S, et al. Explosion mechanics calculation method[M]. Beijing, China: Beijing Institute of Technology Press, 1995.
    [17] ZHOU Y, WANG T, ZHU W, BIAN X, HUANG G. Evaluation of blast mitigation effects of hollow cylindrical barriers based on water and foam [J]. Composite Structures, 2022, 282: 115016. DOI: 10.1016/j.compstruct.2021.115016.
    [18] MATUSKA D A, NEEDHAM C E, DURRETT R E. The AFWL HULL code codes for large problems fluid dynamics[C]//Proceedings of the SIGNUM Meeting on Software for Partial Differential Equations. New York, USA: Association for Computing Machinery, 1975. DOI: 10.1145/800207.806410.
  • 加载中
图(11)
计量
  • 文章访问数:  486
  • HTML全文浏览量:  186
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 修回日期:  2022-02-22
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回