Mechanical properties of the mixed cellular material with soft matrix and its response to repeated impacts
-
摘要: 为了探索具有优异吸能性能的软基体混合胞孔材料的力学性能,研究该类材料在多次冲击下的冲击响应和材料的可恢复性,对一种软基体混合胞孔材料—人工软骨仿生超材料(artificial cartilage foam,ACF)进行了不同速度下的单轴拉伸和压缩实验,得到了ACF材料在不同应变率条件下的应力-应变曲线。并利用落锤冲击实验机对ACF材料和另一种软基体混合胞孔材料—发泡聚丙烯材料(expanded polypropylene,EPP)进行了多次冲击下的对比测试,得到了2种材料在单次和多次冲击下的动力学响应。实验结果表明:ACF材料是一种应变率敏感的材料,随着应变率的提升,材料的弹性模量、抗拉强度和抗压强度均逐渐提高;在50 J 冲击能量作用下,ACF材料能够吸收96%以上的冲击能量,远高于EPP材料的70%,ACF材料具有更加优异的吸能性能;5次冲击后ACF材料的最大峰值力、最大变形量和吸能能力几乎不变。相比于EPP材料,ACF材料有良好的可恢复性,且具有稳定的多次抗冲击能力。这些研究为软基体混合胞孔材料在多次冲击防护中的应用提供了实验依据。Abstract: The mixed cellular materials with soft matrix are a new type of cushioning and protective materials which have excellent energy absorption properties. In order to study the effect of strain rate on the mechanical behaviors of this kind of materials, uniaxial tensile and compression experiments were conducted on the artificial cartilage foam (ACF) material, at different velocities to obtain the stress-strain curves of the ACF material under different strain rate conditions. Based on the obtained stress-strain curves, the elastic moduli and material strengths of the ACF material were gained under different strain rate conditions. And the comparative tests of the ACF material and expanded polypropylene (EPP) material of the same size and thickness under multiple impacts were carried out by a drop-hammer impact test machine. By comparing the impact responses of the two materials under single and multiple impact loads, the energy absorption characteristics, and the stability of the energy absorption characteristics of the two materials were analyzed. The results reveal that the ACF material is a strain rate-sensitive material, and the stress-strain curves under different strain-rate conditions take on the same trend. The elastic modulus, tensile and compressive strengths of the material gradually increase with the increasing strain rate. Under the action of 50-J impact energy, the ACF material can absorb more than 96% of the impact energy, higher than the 70% of the impact energy absorbed by the EPP material. Moreover, the maximum displacement of the ACF material is only 40% of that of the EPP material. Therefore, the ACF material has more excellent energy absorption performance than the EPP material. The peak force, maximum displacement, and energy absorption ability of the ACF material were almost unchanged after five impacts. Compared with the EPP materials, the ACF material has more favorable recoverability and more stable repeated impact resistance. The research of the work can provide an experimental basis for the application of the mixed cellular materials with soft matrix in multiple impact protection.
-
表 1 不同应变率下人工软骨仿生超材料的拉伸强度和断裂应变
Table 1. Tensile strength and breaking strain of the artificial cartilage foam material in tensile experiments at different strain rates
应变率/s−1 拉伸强度/MPa 断裂应变 10−1 0.910 1.468 40 2.046 1.381 120 2.895 1.131 160 2.969 0.772 表 2 不同应变率下压缩实验的平台应力和弹性模量
Table 2. Plateau stresses and elastic moduli obtained in compression experiments at different strain rates
应变率/s−1 弹性模量/MPa 平台应力/MPa 10−1 1.006 0.30 50 23.896 2.22 100 34.069 3.75 150 74.522 4.50 表 3 ACF和EPP材料在不同冲击次数下的能量吸收
Table 3. Energy absorption of ACF and EPP materials under different impact times
No. ACF材料 EPP材料 吸能/J 吸能率/% 吸能率下降/% 吸能/J 吸能率/% 吸能率下降/% 1 44.7 97.1 31.5 71.6 2 45.2 96.6 0.5 26.2 60.0 11.6 3 45.0 96.4 0.7 25.6 58.2 13.4 4 45.0 96.7 0.4 23.8 52.5 19.1 5 45.1 96.7 0.4 25.1 56.3 15.3 -
[1] 王志华, 李世强, 李鑫, 等. 轻质多孔金属及其夹芯结构力学行为的研究进展 [J]. 太原理工大学学报, 2017, 48(3): 492–503. DOI: 10.16355/j.cnki.issn1007-9432tyut.2017.03.030.WANG Z H, LI S Q, LI X, et al. Advances in studies of the mechanical behavior of cellular metallic materials and structures [J]. Journal of Taiyuan University of Technology, 2017, 48(3): 492–503. DOI: 10.16355/j.cnki.issn1007-9432tyut.2017.03.030. [2] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1: 数理关系 [J]. 材料工程, 2019, 47(6): 42–62. DOI: 10.11868/j.issn.1001-4381.2018.001407.LIU P S, CUI G, CHENG W. Study on property model for porous materials 1: mathematical relations [J]. Journal of Materials Engineering, 2019, 47(6): 42–62. DOI: 10.11868/j.issn.1001-4381.2018.001407. [3] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge, UK: Cambridge University Press, 1997. [4] WANG N Z, CHEN X, AO L I, et al. Three-point bending performance of a new aluminum foam composite structure [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(2): 359–368. DOI: 10.1016/s1003-6326(16)64088-8. [5] WAN T, LIU Y, ZHOU C X, et al. Fabrication, properties, and applications of open-cell aluminum foams: a review [J]. Journal of Materials Science & Technology, 2021, 62(3): 11–24. DOI: 10.1016/j.jmst.2020.05.039. [6] ZHANG J X, YANG Y, QIN Q H, et al. Dynamic compressive response of sinusoidal corrugated core sandwich plates [J]. International Journal of Applied Mechanics, 2018, 10(7): 1850075. DOI: 10.1142/S1758825118500758. [7] 朱凌, 郭开岭, 余同希, 等. 泡沫金属夹芯梁在重复冲击下的动态响应 [J]. 爆炸与冲击, 2021, 41(7): 073101. DOI: 10.11883/bzycj-2020-0198.ZHU L, GUO K L, YU T X, et al. Dynamic responses of metal foam sandwich beams to repeated impacts [J]. Explosion and Shock Waves, 2021, 41(7): 073101. DOI: 10.11883/bzycj-2020-0198. [8] 王飞, 李剑荣, 虞吉林. 铝蜂窝结构单向压缩、失稳和破坏机制研究 [J]. 力学学报, 2001, 33(6): 741–748. DOI: 10.3321/j.issn:0459-1879.2001.06.003.WANG F, LI J R, YU J L. A study of instability and collapse of aluminum honeycombs under uniaxial compression [J]. Chinese Journal of Theoretical and Applied Mechanics, 2001, 33(6): 741–748. DOI: 10.3321/j.issn:0459-1879.2001.06.003. [9] 张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为 [J]. 爆炸与冲击, 2014, 34(3): 278–284. DOI: 10.11883/1001-1455(2014)03-0278-07.ZHANG J, ZHAO G P, LU T J. High speed compression behaviour of metallic cellular materials under impact loading [J]. Explosion and Shock Waves, 2014, 34(3): 278–284. DOI: 10.11883/1001-1455(2014)03-0278-07. [10] 杨宝, 汤立群, 刘逸平, 等. 冲击条件下泡沫铝的细观变形特征分析 [J]. 爆炸与冲击, 2012, 32(4): 399–403. DOI: 10.11883/1001-1455(2012)04-0399-05.YANG B, TANG L Q, LIU Y P, et al. Meso deformation characteristics analysis of aluminum foam under impact [J]. Explosion and Shock Waves, 2012, 32(4): 399–403. DOI: 10.11883/1001-1455(2012)04-0399-05. [11] 李玲, 钱学登, 王科. 复合结构混凝土动力学特征及变形破坏机制 [J]. 煤矿安全, 2019, 50(4): 41–45. DOI: 10.13347/j.cnki.mkaq.2019.04.010.LI L, QIAN D K, WANG K. Dynamic characteristics and deformation failure mechanism of composite structure concrete [J]. Safety in Coal Mines, 2019, 50(4): 41–45. DOI: 10.13347/j.cnki.mkaq.2019.04.010. [12] 韩李斌, 杨黎明. 泡沫混凝土动态力学性能及破坏形式 [J]. 宁波大学学报(理工版), 2017, 30(1): 68–72. DOI: 10.3969/j.issn.1001-5132.2017.01.013.HANG L B, YANG L M. Dynamic properties and failure types of foamed concrete [J]. Journal of Ningbo University (Natural Science and Engineering), 2017, 30(1): 68–72. DOI: 10.3969/j.issn.1001-5132.2017.01.013. [13] 王必勤. EPDM发泡材料的制备及结构与性能研究[D]. 上海: 上海交通大学, 2006.WANG B Q. Preparation of EPDM and study on its structure and properties [D]. Shanghai, China: Shanghai Jiao Tong University, 2006. [14] 景鹏. 高g值冲击测试关键技术研究[D]. 太原: 中北大学, 2009.JING P. High-g impact test value of the research of key technologies [D]. Taiyuan, Shanxi, China: North University of China, 2009. [15] 鲁林, 李晓峰. 冲击环境作用下聚氨酯材料的应变率分布及吸能特性研究 [J]. 兵工学报, 2015, 36(S1): 213–219.LU L, LI X F. Research on strain rate distribution and energy absorption of polyurethane materials under shock environment [J]. Acta Armamentarii, 2015, 36(S1): 213–219. [16] 杨文叶, 姜子敬, 闫雪燕, 等. EPP材料在汽车座椅中的应用和性能研究 [J]. 汽车文摘, 2021(8): 58–62. DOI: 10.19822/j.cnki.1671-6329.20210062.TANG W Y, JINAG Z J, YAN X Y, et al. Study on the application and performance of EPP materials in car seats [J]. Automotive Digest, 2021(8): 58–62. DOI: 10.19822/j.cnki.1671-6329.20210062. [17] 金强维. EPP动态缓冲性能的研究[D]. 西安: 陕西科技大学, 2019.JIN Q W. Investigation on dynamic cushioning property of EPP [D]. Xi’an, Shaanxi, China: Shaanxi University of Science and Technology, 2019. [18] 陈润峰, 石庚辰, 张力, 等. 人工软骨仿生材料在引信缓冲中的应用 [J]. 探测与控制学报, 2020, 42(6): 10–14.CHEN R F, SHI G C, ZHANG L, et al. Application of artificial cartilage biomimetic material in fuze buffer [J]. Journal of Detection & Control, 2020, 42(6): 10–14.