Modified discrete numerical model for reinforced concrete structures
-
摘要: 提出一种考虑粘结滑移效应的钢筋混凝土改进型分离式数值模型。在混合物理论基础上,该模型兼顾混凝土基体和钢筋的力学行为,且基于钢筋混凝土界面粘结滑移模型,获得了钢筋等效模型。改进型分离式数值模型由于对钢筋及其界面无显式离散要求,使得钢筋的运用完全独立于其几何形状,同时对混凝土网格没有约束,并且不增加计算成本,因此该模型可适用于钢筋混凝土宏观结构层面分析。通过钢筋混凝土构件-结构的爆炸实验,对改进型分离式数值模型进行层次化验证。对比结果表明,考虑粘结滑移效应的有限元模型能够更好地预测钢筋混凝土结构的宏观力学行为。Abstract: The interaction between rebar and concrete must always be considered to well describe and predict the mechanical behavior of reinforced concrete (RC) structures. A common way to model RC structures is by discrete reinforcements in finite element models where the discrete reinforcements imply that bond conditions between rebar and concrete are perfect. In order to take into account the bond-slip phenomenon, a modified discrete numerical model for RC structures is presented in this paper. The model is formulated within the framework of the mixture theory, considering two phases corresponding to the matrix concrete and the reinforcement bars and incorporating bond-slip effects to the stress-strain relation of the latter by considering the bond-slip model recommended by CEB-FIB. A nonlinear equivalent stress-strain relation for discrete steel bars is generated by incorporating the bond-slip strain to the strain of bars. Based on this model, a comprehensive parametric study is accomplished to obtain the influence of the parameters, including the strengths of the concrete and steel bars as well as the diameter of bars on the modified stress-strain relation of the discrete steel bars. In comparison to the traditional discrete numerical model where interface elements are generated via connecting the degrees of freedom of the bars and concrete meshing, the new model allows for the slipping of the steel bars without explicit discretization of the steel bars and the steel/concrete interfaces. This fact makes it attractive for numerical simulation of concrete structures at the macrostructural level. Using a code JUST-PANDA that is developed in-house, the model is verified by the explosion experiments at the component level and the structural level respectively. The comparisons with experimental results show that the new model can provide a more reliable prediction of the concrete structural behavior due to the consideration of the bond-slip effects in the stress-strain relation of the discrete steel bars by means of a simple procedure.
-
Key words:
- concrete /
- reinforcement bar /
- bond-slip /
- explosion load
-
表 1 钢筋等效材料参数
Table 1. Equivalent material parameters of rebar
钢筋 $ f_{\text{y}}^{{\text{eq}}} $/MPa $ E_{\text{f}}^{{\text{eq}}} $/GPa $ H_{\text{f}}^{{\text{eq}}} $/MPa Vf/% 纵筋 425.0 162.2 788.8 78.5 箍筋 368.1 150.2 656.5 50.0 -
[1] MARKOU G, PAPADRAKAKIS M. An efficient generation method of embedded reinforcement in hexahedral elements for reinforced concrete simulations [J]. Advances in Engineering Software, 2012, 45(1): 175–187. DOI: 10.1016/j.advengsoft.2011.09.025. [2] 李易, 陆新征, 任爱珠, 等. 某八层混凝土框架结构火灾连续倒塌模拟 [J]. 工程力学, 2011, 28(S1): 53–59.LI Y, LU X Z, REN A Z, et al. Simulation for fire-induced progressive collapse of an 8-storey rc frame structure [J]. Engineering Mechanics, 2011, 28(S1): 53–59. [3] DEHESTANI M, MOUSAVI S S. Modified steel bar model incorporating bond-slip effects for embedded element method [J]. Construction and Building Materials, 2015, 81: 284–290. DOI: 10.1016/j.conbuildmat.2015.02.027. [4] 武海军, 黄风雷, 付跃升, 等. 钢筋混凝土中爆炸破坏效应数值模拟分析 [J]. 北京理工大学学报, 2007, 27(3): 200–204. DOI: 10.3969/j.issn.1001-0645.2007.03.004.WU H J, HUANG F L, FU Y S, et al. Numerical simulation of reinforced concrete breakage under internal blast loading [J]. Transactions of Beijing Institute of Technology, 2007, 27(3): 200–204. DOI: 10.3969/j.issn.1001-0645.2007.03.004. [5] 师燕超, 李忠献. 爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式 [J]. 建筑结构学报, 2008, 29(4): 112–117. DOI: 10.3321/j.issn:1000-6869.2008.04.015.SHI Y C, LI Z X. Dynamic responses and failure modes of RC columns under blast loading [J]. Journal of Building Structures, 2008, 29(4): 112–117. DOI: 10.3321/j.issn:1000-6869.2008.04.015. [6] 汪维, 张舵, 卢芳云, 等. 方形钢筋混凝土板的近场抗爆性能 [J]. 爆炸与冲击, 2012, 32(3): 251–258. DOI: 10.11883/1001-1455(2012)03-0251-08.WANG W, ZHANG D, LU F Y, et al. Anti-explosion performances of square reinforced concrete slabs under close-in explosions [J]. Explosion and Shock Waves, 2012, 32(3): 251–258. DOI: 10.11883/1001-1455(2012)03-0251-08. [7] WANG W, YANG J C, WANG J H, et al. Experimental investigation of polyisocyanate-oxazodone coated square reinforced concrete slab under contact explosions [J]. International Journal of Impact Engineering, 2021, 149: 103777. DOI: 10.1016/j.ijimpeng.2020.103777. [8] YU X, ZHOU B K, HU F, et al. Experimental investigation of basalt fiber-reinforced polymer (BFRP) bar reinforced concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2020, 144: 103632. DOI: 10.1016/j.ijimpeng.2020.103632. [9] NING J G, MENG F L, MA T B, et al. Failure analysis of reinforced concrete slab under impact loading using a novel numerical method [J]. International Journal of Impact Engineering, 2020, 144: 103647. DOI: 10.1016/j.ijimpeng.2020.103647. [10] SHI Y C, WANG J, CUI J. Experimental studies on fragments of reinforced concrete slabs under close-in explosions [J]. International Journal of Impact Engineering, 2020, 144: 103630. DOI: 10.1016/j.ijimpeng.2020.103630. [11] LI Y, CHEN Z Y, REN X B, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading [J]. International Journal of Impact Engineering, 2020, 142: 103579. DOI: 10.1016/j.ijimpeng.2020.103579. [12] SU Q, WU H, SUN H S, et al. Experimental and numerical studies on dynamic behavior of reinforced UHPC panel under medium-range explosions [J]. International Journal of Impact Engineering, 2021, 148: 103761. DOI: 10.1016/j.ijimpeng.2020.103761. [13] KWAK H G, FILIPPOU F C. A new reinforcing steel model with bond-slip [J]. Structural Engineering and Mechanics, 1995, 3(4): 299–312. DOI: 10.12989/sem.1995.3.4.299. [14] DE GROOT A K, KUSTERS G M A, MONNIER T. Numerical modeling of bond-slip behavior [M]// Heron Concrete Mechanics, 1981. [15] LUCCIONI B M, AMBROSINI R D, DANESI R F. Analysis of building collapse under blast loads [J]. Engineering Structures, 2004, 26(1): 63–71. DOI: 10.1016/j.engstruct.2003.08.011. [16] KWASNIEWSKI L. Nonlinear dynamic simulations of progressive collapse for a multistory building [J]. Engineering Structures, 2010, 32(5): 1223–1235. DOI: 10.1016/j.engstruct.2009.12.048. [17] TRUESDELL C, TOUPIN R. The classical field theories [M]// FLÜGGE S. Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie. Berlin: Springer, 1960: 226–858. DOI: 10.1007/978-3-642-45943-6_2. [18] BELARBI A, HSU T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete [J]. Structural Journal, 1994, 91(4): 465–474. [19] FIB (International Federation For Structural Concrete). Bulletin 55: model code for concrete structures 2010 [S]. Lausanne: International Federation for Structural Concrete, 2010. [20] 曾繁, 肖桂仲, 田荣. 强冲击波结构毁伤等级评估软件JUST-PANDA及应用 [C]// 2018第十二届全国爆炸力学学术会议论文集. 桐乡: 中国力学学会, 2018. [21] MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN: a parallel software infrastructure for scientific computing [J]. Frontiers of Computer Science in China, 2010, 4(4): 480–488. DOI: 10.1007/s11704-010-0120-5. [22] LIU Q K, MO Z Y, ZHANG A Q, et al. JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes [J]. CCF Transactions on High Performance Computing, 2019, 1(1): 35–48. DOI: 10.1007/s42514-019-00001-z. [23] 肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析 [J]. 计算机辅助设计与图形学学报, 2014, 26(5): 675–686.XIAO L, CAO X L, WANG H W, et al. Large-scale data visual analysis for numerical simulation of laser fusion [J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5): 675–686. [24] CHEN L, HU Y, REN H Q, et al. Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. International Journal of Impact Engineering, 2019, 132: 103326. DOI: 10.1016/j.ijimpeng.2019.103326. [25] RANDERS-PEHRSON G, BANNISTER K A. Airblast loading model for DYNA2D and DYNA3D: ARL-TR-1310 [R]. Maryland: U. S. Army Research Laboratory, 1997. [26] WOODSON S C, BAYLOT J T. Quarter-scale building/column experiments [C]// Structures Congress. Philadelphia: ASCE, 2000: 1–8. [27] BAYLOT J T, BEVINS T L. Effect of responding and failing structural components on the airblast pressures and loads on and inside of the structure [J]. Computers & Structures, 2007, 85(11): 891–910. DOI: 10.1016/j.compstruc.2007.01.001.