钢筋混凝土结构改进型分离式数值模型

曾繁 冯晓伟 黄超 徐权 肖桂仲 田荣

曾繁, 冯晓伟, 黄超, 徐权, 肖桂仲, 田荣. 钢筋混凝土结构改进型分离式数值模型[J]. 爆炸与冲击, 2022, 42(6): 065102. doi: 10.11883/bzycj-2021-0286
引用本文: 曾繁, 冯晓伟, 黄超, 徐权, 肖桂仲, 田荣. 钢筋混凝土结构改进型分离式数值模型[J]. 爆炸与冲击, 2022, 42(6): 065102. doi: 10.11883/bzycj-2021-0286
ZENG Fan, FENG Xiaowei, HUANG Chao, XU Quan, XIAO Guizhong, TIAN Rong. Modified discrete numerical model for reinforced concrete structures[J]. Explosion And Shock Waves, 2022, 42(6): 065102. doi: 10.11883/bzycj-2021-0286
Citation: ZENG Fan, FENG Xiaowei, HUANG Chao, XU Quan, XIAO Guizhong, TIAN Rong. Modified discrete numerical model for reinforced concrete structures[J]. Explosion And Shock Waves, 2022, 42(6): 065102. doi: 10.11883/bzycj-2021-0286

钢筋混凝土结构改进型分离式数值模型

doi: 10.11883/bzycj-2021-0286
基金项目: 科学挑战专题(TZ2018002)
详细信息
    作者简介:

    曾 繁(1989- ),男,博士,副研究员,zeng_fan@iapcm.ac.cn

  • 中图分类号: O383

Modified discrete numerical model for reinforced concrete structures

  • 摘要: 提出一种考虑粘结滑移效应的钢筋混凝土改进型分离式数值模型。在混合物理论基础上,该模型兼顾混凝土基体和钢筋的力学行为,且基于钢筋混凝土界面粘结滑移模型,获得了钢筋等效模型。改进型分离式数值模型由于对钢筋及其界面无显式离散要求,使得钢筋的运用完全独立于其几何形状,同时对混凝土网格没有约束,并且不增加计算成本,因此该模型可适用于钢筋混凝土宏观结构层面分析。通过钢筋混凝土构件-结构的爆炸实验,对改进型分离式数值模型进行层次化验证。对比结果表明,考虑粘结滑移效应的有限元模型能够更好地预测钢筋混凝土结构的宏观力学行为。
  • 图  1  钢筋混凝土框架结构分离式有限元模型

    Figure  1.  Improved discrete finite element model of reinforced concrete frame structures

    图  2  钢筋尺度模型

    Figure  2.  Schematic of the model at steel bar scale

    图  3  弹性模量缩放因子$E^{\rm {eq}}_{\rm f}/E_{\rm f}$与粘结区长度l的关系

    Figure  3.  Relationship between the scaling factor of the elastic modulus ($E^{\rm {eq}}_{\rm f}/E_{\rm f}$) and the length of the bonding zone (l) under different physical parameters

    图  4  塑性硬化模量缩放因子$H^{\rm {eq}}_{\rm f}/H_{\rm f}$与粘结区长度l的关系

    Figure  4.  Relationship between the scaling factor of the plastic hardening modulus ($H^{\rm {eq}}_{\rm f}/H_{\rm f}$) and the length of the bonding zone (l) under different physical parameters

    图  5  反射超压时程曲线对比

    Figure  5.  Comparison of the reflected overpressure-time history curves

    图  6  柱竖向位移时程曲线及破坏形貌对比

    Figure  6.  Comparison of the vertical displacement-time history curves and failure morphology of columns

    图  7  板竖向位移时程曲线对比

    Figure  7.  Comparison of the vertical displacement-time history curves of the slab

    图  8  网格尺寸对板跨中竖向位移时程曲线的影响

    Figure  8.  Effect of mesh size on the vertical displacement-time history curves of the slab

    图  9  改进型分离式数值有限元模型及实验(单位:m)

    Figure  9.  Improved discrete finite element model and experiment (Unit: m)

    图  10  框架结构破坏形貌对比

    Figure  10.  Comparison of the failure morphology of the frame structure

    图  11  低层中柱位移时程曲线对比

    Figure  11.  Comparison of the displacement-time history curves of the lower mid column

    表  1  钢筋等效材料参数

    Table  1.   Equivalent material parameters of rebar

    钢筋$ f_{\text{y}}^{{\text{eq}}} $/MPa$ E_{\text{f}}^{{\text{eq}}} $/GPa$ H_{\text{f}}^{{\text{eq}}} $/MPaVf/%
    纵筋425.0162.2788.878.5
    箍筋368.1150.2656.550.0
    下载: 导出CSV
  • [1] MARKOU G, PAPADRAKAKIS M. An efficient generation method of embedded reinforcement in hexahedral elements for reinforced concrete simulations [J]. Advances in Engineering Software, 2012, 45(1): 175–187. DOI: 10.1016/j.advengsoft.2011.09.025.
    [2] 李易, 陆新征, 任爱珠, 等. 某八层混凝土框架结构火灾连续倒塌模拟 [J]. 工程力学, 2011, 28(S1): 53–59.

    LI Y, LU X Z, REN A Z, et al. Simulation for fire-induced progressive collapse of an 8-storey rc frame structure [J]. Engineering Mechanics, 2011, 28(S1): 53–59.
    [3] DEHESTANI M, MOUSAVI S S. Modified steel bar model incorporating bond-slip effects for embedded element method [J]. Construction and Building Materials, 2015, 81: 284–290. DOI: 10.1016/j.conbuildmat.2015.02.027.
    [4] 武海军, 黄风雷, 付跃升, 等. 钢筋混凝土中爆炸破坏效应数值模拟分析 [J]. 北京理工大学学报, 2007, 27(3): 200–204. DOI: 10.3969/j.issn.1001-0645.2007.03.004.

    WU H J, HUANG F L, FU Y S, et al. Numerical simulation of reinforced concrete breakage under internal blast loading [J]. Transactions of Beijing Institute of Technology, 2007, 27(3): 200–204. DOI: 10.3969/j.issn.1001-0645.2007.03.004.
    [5] 师燕超, 李忠献. 爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式 [J]. 建筑结构学报, 2008, 29(4): 112–117. DOI: 10.3321/j.issn:1000-6869.2008.04.015.

    SHI Y C, LI Z X. Dynamic responses and failure modes of RC columns under blast loading [J]. Journal of Building Structures, 2008, 29(4): 112–117. DOI: 10.3321/j.issn:1000-6869.2008.04.015.
    [6] 汪维, 张舵, 卢芳云, 等. 方形钢筋混凝土板的近场抗爆性能 [J]. 爆炸与冲击, 2012, 32(3): 251–258. DOI: 10.11883/1001-1455(2012)03-0251-08.

    WANG W, ZHANG D, LU F Y, et al. Anti-explosion performances of square reinforced concrete slabs under close-in explosions [J]. Explosion and Shock Waves, 2012, 32(3): 251–258. DOI: 10.11883/1001-1455(2012)03-0251-08.
    [7] WANG W, YANG J C, WANG J H, et al. Experimental investigation of polyisocyanate-oxazodone coated square reinforced concrete slab under contact explosions [J]. International Journal of Impact Engineering, 2021, 149: 103777. DOI: 10.1016/j.ijimpeng.2020.103777.
    [8] YU X, ZHOU B K, HU F, et al. Experimental investigation of basalt fiber-reinforced polymer (BFRP) bar reinforced concrete slabs under contact explosions [J]. International Journal of Impact Engineering, 2020, 144: 103632. DOI: 10.1016/j.ijimpeng.2020.103632.
    [9] NING J G, MENG F L, MA T B, et al. Failure analysis of reinforced concrete slab under impact loading using a novel numerical method [J]. International Journal of Impact Engineering, 2020, 144: 103647. DOI: 10.1016/j.ijimpeng.2020.103647.
    [10] SHI Y C, WANG J, CUI J. Experimental studies on fragments of reinforced concrete slabs under close-in explosions [J]. International Journal of Impact Engineering, 2020, 144: 103630. DOI: 10.1016/j.ijimpeng.2020.103630.
    [11] LI Y, CHEN Z Y, REN X B, et al. Experimental and numerical study on damage mode of RC slabs under combined blast and fragment loading [J]. International Journal of Impact Engineering, 2020, 142: 103579. DOI: 10.1016/j.ijimpeng.2020.103579.
    [12] SU Q, WU H, SUN H S, et al. Experimental and numerical studies on dynamic behavior of reinforced UHPC panel under medium-range explosions [J]. International Journal of Impact Engineering, 2021, 148: 103761. DOI: 10.1016/j.ijimpeng.2020.103761.
    [13] KWAK H G, FILIPPOU F C. A new reinforcing steel model with bond-slip [J]. Structural Engineering and Mechanics, 1995, 3(4): 299–312. DOI: 10.12989/sem.1995.3.4.299.
    [14] DE GROOT A K, KUSTERS G M A, MONNIER T. Numerical modeling of bond-slip behavior [M]// Heron Concrete Mechanics, 1981.
    [15] LUCCIONI B M, AMBROSINI R D, DANESI R F. Analysis of building collapse under blast loads [J]. Engineering Structures, 2004, 26(1): 63–71. DOI: 10.1016/j.engstruct.2003.08.011.
    [16] KWASNIEWSKI L. Nonlinear dynamic simulations of progressive collapse for a multistory building [J]. Engineering Structures, 2010, 32(5): 1223–1235. DOI: 10.1016/j.engstruct.2009.12.048.
    [17] TRUESDELL C, TOUPIN R. The classical field theories [M]// FLÜGGE S. Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie. Berlin: Springer, 1960: 226–858. DOI: 10.1007/978-3-642-45943-6_2.
    [18] BELARBI A, HSU T T C. Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete [J]. Structural Journal, 1994, 91(4): 465–474.
    [19] FIB (International Federation For Structural Concrete). Bulletin 55: model code for concrete structures 2010 [S]. Lausanne: International Federation for Structural Concrete, 2010.
    [20] 曾繁, 肖桂仲, 田荣. 强冲击波结构毁伤等级评估软件JUST-PANDA及应用 [C]// 2018第十二届全国爆炸力学学术会议论文集. 桐乡: 中国力学学会, 2018.
    [21] MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN: a parallel software infrastructure for scientific computing [J]. Frontiers of Computer Science in China, 2010, 4(4): 480–488. DOI: 10.1007/s11704-010-0120-5.
    [22] LIU Q K, MO Z Y, ZHANG A Q, et al. JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes [J]. CCF Transactions on High Performance Computing, 2019, 1(1): 35–48. DOI: 10.1007/s42514-019-00001-z.
    [23] 肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析 [J]. 计算机辅助设计与图形学学报, 2014, 26(5): 675–686.

    XIAO L, CAO X L, WANG H W, et al. Large-scale data visual analysis for numerical simulation of laser fusion [J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5): 675–686.
    [24] CHEN L, HU Y, REN H Q, et al. Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. International Journal of Impact Engineering, 2019, 132: 103326. DOI: 10.1016/j.ijimpeng.2019.103326.
    [25] RANDERS-PEHRSON G, BANNISTER K A. Airblast loading model for DYNA2D and DYNA3D: ARL-TR-1310 [R]. Maryland: U. S. Army Research Laboratory, 1997.
    [26] WOODSON S C, BAYLOT J T. Quarter-scale building/column experiments [C]// Structures Congress. Philadelphia: ASCE, 2000: 1–8.
    [27] BAYLOT J T, BEVINS T L. Effect of responding and failing structural components on the airblast pressures and loads on and inside of the structure [J]. Computers & Structures, 2007, 85(11): 891–910. DOI: 10.1016/j.compstruc.2007.01.001.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  177
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 修回日期:  2021-09-17
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回