Oblique penetration of elliptical cross-section projectile into metal target
-
摘要: 为研究椭圆截面弹体对半无限金属靶体的侵彻弹道规律,基于14.5 mm弹道枪平台,开展了椭圆截面弹体在0°~20°倾角、850~950 m/s撞击速度下对2A12铝合金的斜侵彻试验。基于空腔膨胀理论及局部相互作用模型,建立了椭圆截面弹体侵彻弹道模型,并结合试验数据验证了模型的准确性。在此基础上,进一步分析了椭圆截面弹体长短轴之比、绕弹轴旋转角度、弹体撞击速度对侵彻弹道的影响规律。弹体长短轴之比为1.0时,弹体退化为尖卵形圆截面弹体,且椭圆截面弹体侵彻弹道稳定性随长短轴之比的增大而变弱,最优长短轴之比为1.0,即尖卵形圆截面弹体。椭圆截面弹体绕弹轴旋转一定角度后,侵彻弹道在平面曲线与空间曲线之间变化,当旋转角度为0°、90°时,侵彻弹道为二维平面弹道,当旋转角度在0°~90°之间时,侵彻弹道为三维空间弹道。当弹体撞击速度由800 m/s提升至1000 m/s时,椭圆截面弹体姿态角增量由18.6°降至17.8°。Abstract: In order to study the penetrating trajectories of elliptical cross-section projectiles into semi-infinite metal targets, a penetration trajectory model was established based on the dynamic cavity expansion theory and local interaction model. The shape function of the elliptical cross-section projectile was developed based on the local interaction model, and the resistance model derived from the dynamic cavity expansion theory was used to calculate the forces and moments acting on the elliptical cross-section projectile under the local Cartesian coordinate system. Thus, the factors affecting the projectile penetration trajectory were considered, including the major axis to minor axis ratio of the cross-section, the angle around the projectile axis and the striking velocity. Then, oblique penetrating experiments were carried out at a striking velocity ranging from 850 to950 m/s and an oblique angle ranging from 0° to 20°. Furthermore, the model was validated by experimental results. Finally, the influence of the major axis to minor axis ratio of the cross-section, the angle around the projectile axis and the striking velocity on the penetration trajectory was analyzed. When the major axis to minor axis ratio is 1.0, the projectile is degenerated into an ogive-nosed one. With the increase of this ratio, the stability of the elliptical cross-section projectile reduces. The optimal value of the major axis to minor axis ratio is 1.0, and the penetration trajectory is the most stable at this time. The penetration trajectory will change from a two-dimensional plane curve to a three-dimensional space curve when the angle around the projectile axis varies. When the angle around the projectile axis is 0° or 90°, the penetration trajectory is in a two-dimensional plane. Otherwise, the penetration trajectory is a three-dimensional space curve. The increasement of the attitude angle of the elliptical cross-section projectile decreases from 18.6° to 17.8° when the striking velocity increases from 800 m/s to 1000 m/s.
-
表 1 弹体结构质量参数
Table 1. Parameters of the projectile
弹体 等效曲径比 2ar/mm 2br/mm L/mm m/g HRC硬度 30CrMnSiNi2A 5.6 14.5 9.0 43.5 22.2 42~45 表 2 2A12铝合金力学性能参数
Table 2. Parameters of the target material aluminum alloy 2A12
材料 ρt/(kg∙m−3) E/GPa Yt/MPa n 2A12 2730 69.3 326.7 0.069 表 3 弹体侵彻试验结果
Table 3. Test results of the penetration trajectories
试验 v0/(m∙s−1) α0/(°) γ/(°) θ0/(°) 试验结果 SX/mm SY/mm SZ/mm αend/(°) T2-8 873 5.0 14 –1.0 3.7 14.8 –55.4 22.0 T2-13 898 11.1 –54 1.1 10.0 13.8 –53.3 25.1 T2-12 920 20.8 –7 0.8 5.3 43.5 –57.5 43.3 表 4 椭圆截面弹体终点坐标对比
Table 4. Comparison of the final coordinates of the elliptic cross section projectiles
试验 v0/(m∙s–1) 试验结果 计算结果 误差 SX/mm SY/mm SZ/mm αend/(°) SX/mm SY/mm SZ/mm αend/(°) ΔSX/mm ΔSY/mm ΔSZ/mm Δαend/(°) T2-8 873 3.7 14.8 –55.4 22.0 0.2 8.5 –60.0 15.4 3.5 6.3 –4.6 6.6 T2-13 898 10.0 13.8 –53.3 25.1 0.9 17.8 –57.5 14.6 9.1 –4.0 –4.2 7.3 T2-12 920 5.3 42.7 –57.5 43.3 1.4 37.2 –59.1 36.1 3.9 5.5 –1.6 –15.8 表 5 计算弹体结构质量参数
Table 5. Computational parameters of the projectiles
弹体 2ar/mm 2br/mm a rCRH Lp/mm L/mm m/g Jx/(g·mm2) Jy/(g·mm2) Jz/(g·mm2) loc/mm 1# 9.0 9.0 1.0 5.6 20.9 43.5 16.9 1876 1876 158 26.2 2# 10.8 9.0 1.2 5.6 20.9 43.5 17.0 1839 1877 217 24.3 3# 12.6 9.0 1.4 5.6 20.9 43.5 17.0 1847 1930 274 23.1 4# 14.5 9.0 1.6 5.6 20.9 43.5 17.1 1967 2108 344 23.4 5# 16.2 9.0 1.8 5.6 20.9 43.5 17.1 2091 2289 414 22.2 6# 18.0 9.0 2.0 5.6 20.9 43.5 17.0 2010 2266 468 21.2 -
[1] WOO H J. Cavity expansion analysis of non-circular cross-sectional penetration problems [D]. Austin, USA: The University of Texas, 1997. [2] BLESS S J. Penetration mechanics of non-circular rods [J]. American Institute of Physics, 1996, 370(1): 1119–1122. DOI: 10.1063/1.50861. [3] 杜忠华, 曾国强, 余春祥, 等. 异型侵彻体垂直侵彻半无限靶板试验研究 [J]. 弹道学报, 2008, 20(1): 19–21.DU Z H, ZENG G Q, YU C X, et al. Experimental research of novel penetrator vertically penetrating semi-infinite target [J]. Journal of Ballistics, 2008, 20(1): 19–21. [4] 杜忠华, 朱建生, 王贤治, 等. 异型侵彻体垂直侵彻半无限靶板的分析模型 [J]. 兵工学报, 2009, 30(4): 403–407. DOI: 10.3321/j.issn:1000-1093.2009.04.005.DU Z H, ZHU J S, WANG X Z, et al. Analytical model on non-circular penetrator impacting semi-infinite target perpendicularly [J]. Acta Armamentarii, 2009, 30(4): 403–407. DOI: 10.3321/j.issn:1000-1093.2009.04.005. [5] 高光发, 李永池, 刘卫国, 等. 长杆弹截面形状对垂直侵彻深度的影响 [J]. 兵器材料科学与工程, 2011, 34(3): 5–8. DOI: 10.3969/j.issn.1004-244X.2011.03.002.GAO G F, LI Y C, LIU W G, et al. Influence of the cross-section shapes of long rod projectile on the vertical penetration depth [J]. Ordnace Marerial Science and Engineering, 2011, 34(3): 5–8. DOI: 10.3969/j.issn.1004-244X.2011.03.002. [6] PARTOM Y. The optimal velocity of constant kinetic energy constant L/D long rod projectiles [J]. International Journal of Impact Engineering, 1995, 17(4): 605–614. DOI: 10.1016/0734-743X(95)99884-T. [7] PARTOM Y, YAZIV D. Penetration of L/D=10 and 20 tungsten alloy projectiles into RHA targets [J]. American Institute of Physics, 1994, 309: 1801–1804. DOI: 10.1063/1.46345. [8] 荣光, 薛晓中, 孙传杰, 等. 异型弹芯斜侵彻靶板的数值分析 [J]. 弹道学报, 2009, 21(1): 9–12.RONG G, XUE X Z, SUN C J, et al. Numerical analysis of a non-circular cross-sectional projectile oblique penetrating into target [J]. Journal of Ballistics, 2009, 21(1): 9–12. [9] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020. [10] DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583. [11] ZHANG S, WU H J, ZHANG X X, et al. High-velocity penetration of concrete targets with three types of projectiles: experiments and analysis [J]. Latin American Journal of Solids and Structures, 2017, 14(9): 1614–1628. DOI: 10.1590/1679-78253753. [12] 刘子豪, 武海军, 高旭东, 等. 椭圆截面弹体侵彻混凝土阻力特性研究 [J]. 北京理工大学学报, 2019, 39(2): 135–141; 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.LIU Z H, WU H J, GAO X D, et al. Study on the resistance characteristics of elliptical cross-section projectile penetrating concrete [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 135–141; 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005. [13] 王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(S2): 1–12. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(S2): 1–12. DOI: 10.3969/j.issn.1000-1093.2020.S2.001. [14] 王浩, 潘鑫, 武海军, 等. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析 [J]. 爆炸与冲击, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.WANG H, PAN X, WU H J, et al. Energy dissipation analysis of elliptical truncated oval rigid projectile penetrating stiffened plate [J]. Explosion and Shock Waves, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350. [15] GAO X D, LI Q M. Trajectory instability and convergence of the curvilinear motion of a hard projectile in deep penetration [J]. International Journal of Mechanical Sciences, 2017, 121: 123–142. DOI: 10.1016/j.ijmecsci.2016.12.021. [16] 高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析 [J]. 兵工学报, 2014, 35(S2): 33–39.GAO X D, LI Q M. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle [J]. Acta Armamentarii, 2014, 35(S2): 33–39. [17] 马兆芳, 段卓平, 欧卓成, 等. 弹体斜侵彻贯穿薄混凝土靶姿态变化实验和理论研究 [J]. 兵工学报, 2015, 36(S1): 248–254.MA Z F, DUAN Z P, OU Z C, et al. The experimental and theoretical research on attitude of projectile obliquely penetrating into thin concrete target [J]. Acta Armamentarii, 2015, 36(S1): 248–254. [18] CHEN X G, LU F Y, ZHANG D. Penetration trajectory of concrete targets by ogived steel projectiles−experiments and simulations [J]. International Journal of Impact Engineering, 2018, 120: 202–213. DOI: 10.1016/j.ijimpeng.2018.06.004. [19] WARREN T L, POORMON K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2001, 25(10): 993–1022. DOI: 10.1016/S0734-743X(01)00024-0. [20] WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047. [21] BERNARD R S, CREIGHTON D C. Projectile penetration in soil and rock: analysis for non-normal impact: SL-79-15 [R]. Vicksbury, USA: U. S. Army Engineer Waterways Experimental Station Soils and Pavements Laboratory, 1979. [22] BERNARD R S, CREIGHTON D C. Non-normal impact and penetration. analysis for hard targets and small angles of attack: SL-78-14 [R]. Vicksbury, USA: U. S. Army Engineer Waterways Experimental Station Soils and Pavements Laboratory, 1978. [23] FANG Q, KONG X Z, WU H, et al. Predictions of projectile penetration and perforation by DAFL with the free surface effect [C] // 12th International Conference on Structures Under Shock and Impact. Greece, 2012. DOI: 10.2495/SU120221. [24] FANG Q, KONG X Z, HONG J, et al. Prediction of projectile penetration and perforation by finite cavity expansion method with the free-surface effect [J]. Acta Mechanica Solida Sinica, 2014, 27(6): 597–611. DOI: 10.1016/S0894-9166(15)60005-2. [25] KONG X Z, FANG Q, HONG J, et al. Numerical study of the wake separation and reattachment effect on the trajectory of a hard projectile [J]. International Journal of Protective Structures, 2014, 5(1): 97–117. DOI: 10.1260/2041-4196.5.1.97. [26] 孔祥振, 方秦, 吴昊. 考虑靶体自由表面和开裂区影响的可变形弹体斜侵彻脆性材料的终点弹道分析 [J]. 兵工学报, 2014, 35(6): 814–821. DOI: 10.3969/j.issn.1000-1093.2014.06.010.KONG X Z, FANG Q, WU H. Terminal ballistics study of deformable projectile penetrating brittle material targets for free-surface and crack region effects [J]. Acta Armamentarii, 2014, 35(6): 814–821. DOI: 10.3969/j.issn.1000-1093.2014.06.010. [27] WEI H Y, ZHANG X F, LIU C, et al. Oblique penetration of ogive-nosed projectile into aluminum alloy targets [J]. International Journal of Impact Engineering, 2021, 148: 103745. DOI: 10.1016/j.ijimpeng.2020.103745. [28] FORRESTAL M J, WARREN T L. Penetration equations for ogive-nose rods into aluminum targets [J]. International Journal of Impact Engineering, 2008, 35(8): 727–730. DOI: 10.1016/j.ijimpeng.2007.11.002.