椭圆截面弹体斜侵彻金属靶体弹道研究

魏海洋 张先锋 熊玮 周婕群 刘闯 冯晓伟

魏海洋, 张先锋, 熊玮, 周婕群, 刘闯, 冯晓伟. 椭圆截面弹体斜侵彻金属靶体弹道研究[J]. 爆炸与冲击, 2022, 42(2): 023304. doi: 10.11883/bzycj-2021-0291
引用本文: 魏海洋, 张先锋, 熊玮, 周婕群, 刘闯, 冯晓伟. 椭圆截面弹体斜侵彻金属靶体弹道研究[J]. 爆炸与冲击, 2022, 42(2): 023304. doi: 10.11883/bzycj-2021-0291
WEI Haiyang, ZHANG Xianfeng, XIONG Wei, ZHOU Jiequn, LIU Chuang, FENG Xiaowei. Oblique penetration of elliptical cross-section projectile into metal target[J]. Explosion And Shock Waves, 2022, 42(2): 023304. doi: 10.11883/bzycj-2021-0291
Citation: WEI Haiyang, ZHANG Xianfeng, XIONG Wei, ZHOU Jiequn, LIU Chuang, FENG Xiaowei. Oblique penetration of elliptical cross-section projectile into metal target[J]. Explosion And Shock Waves, 2022, 42(2): 023304. doi: 10.11883/bzycj-2021-0291

椭圆截面弹体斜侵彻金属靶体弹道研究

doi: 10.11883/bzycj-2021-0291
基金项目: 国家自然科学基金(11790292);国家自然科学基金委员会与中国工程物理研究院联合基金(U1730101);中央高校基本科研业务费专项(30919011401)
详细信息
    作者简介:

    魏海洋(1996- ),男,博士研究生,why1996218@njust.edu.cn

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: 0385

Oblique penetration of elliptical cross-section projectile into metal target

  • 摘要: 为研究椭圆截面弹体对半无限金属靶体的侵彻弹道规律,基于14.5 mm弹道枪平台,开展了椭圆截面弹体在0°~20°倾角、850~950 m/s撞击速度下对2A12铝合金的斜侵彻试验。基于空腔膨胀理论及局部相互作用模型,建立了椭圆截面弹体侵彻弹道模型,并结合试验数据验证了模型的准确性。在此基础上,进一步分析了椭圆截面弹体长短轴之比、绕弹轴旋转角度、弹体撞击速度对侵彻弹道的影响规律。弹体长短轴之比为1.0时,弹体退化为尖卵形圆截面弹体,且椭圆截面弹体侵彻弹道稳定性随长短轴之比的增大而变弱,最优长短轴之比为1.0,即尖卵形圆截面弹体。椭圆截面弹体绕弹轴旋转一定角度后,侵彻弹道在平面曲线与空间曲线之间变化,当旋转角度为0°、90°时,侵彻弹道为二维平面弹道,当旋转角度在0°~90°之间时,侵彻弹道为三维空间弹道。当弹体撞击速度由800 m/s提升至1000 m/s时,椭圆截面弹体姿态角增量由18.6°降至17.8°。
  • 图  1  椭圆弹体形状示意图

    Figure  1.  Schematic diagram of the elliptical cross-section projectile

    图  2  侵彻初始条件分析

    Figure  2.  Analysis of the initial penetration conditions

    图  3  弹体表面微元法向速度分析

    Figure  3.  Analysis of the outer normal velocity of surface elements of the projectile

    图  4  弹体受力分析

    Figure  4.  Analyses of forces and moments acting on the projectile

    图  5  弹体实物

    Figure  5.  Photo of an elliptical cross-section projectile

    图  6  试验现场布局

    Figure  6.  Layout of the testing site

    图  7  弹体飞行姿态分析

    Figure  7.  Analysis of the flight attitude of the projectile

    图  8  靶体破坏结果

    Figure  8.  Damage patterns of the targets

    图  9  侵彻弹道试验结果

    Figure  9.  Results of the penetration trajectories

    图  10  椭圆截面弹体侵彻弹道

    Figure  10.  Penetration trajectories of the elliptic cross section projectiles

    图  11  γ=0°时不同弹体侵彻弹道计算结果

    Figure  11.  Calculation results of the penetration trajectories of various projectiles while γ is 0°

    图  12  γ=0°时不同弹体的姿态角变化

    Figure  12.  Time histories of the attitude angle αx of various projectiles while γ is 0°

    图  13  弹体绕弹轴旋转示意图

    Figure  13.  Schematic diagraph of the projectile rotating around axis z

    图  14  不同γ角下弹体侵彻弹道计算结果

    Figure  14.  Calculation results of penetration trajectories at different γ

    图  15  不同γ角度下弹体姿态角变化

    Figure  15.  Time histories of the attitude angle of projectiles under different γ

    图  16  不同v0下弹体侵彻弹道计算结果

    Figure  16.  Calculation results of the penetrationtrajectories at different v0

    图  17  不同v0下弹体姿态角变化

    Figure  17.  Time histories of the attitude angle at different v0

    表  1  弹体结构质量参数

    Table  1.   Parameters of the projectile

    弹体等效曲径比2ar/mm2br/mmL/mmm/gHRC硬度
    30CrMnSiNi2A5.614.59.043.522.242~45
    下载: 导出CSV

    表  2  2A12铝合金力学性能参数

    Table  2.   Parameters of the target material aluminum alloy 2A12

    材料ρt/(kg∙m−3)E/GPaYt/MPan
    2A12273069.3326.70.069
    下载: 导出CSV

    表  3  弹体侵彻试验结果

    Table  3.   Test results of the penetration trajectories

    试验v0/(m∙s−1)α0/(°)γ/(°)θ0/(°)试验结果
    SX/mmSY/mmSZ/mmαend/(°)
    T2-8873 5.0 14–1.0 3.714.8–55.422.0
    T2-1389811.1–54 1.110.013.8–53.325.1
    T2-1292020.8 –7 0.8 5.343.5–57.543.3
    下载: 导出CSV

    表  4  椭圆截面弹体终点坐标对比

    Table  4.   Comparison of the final coordinates of the elliptic cross section projectiles

    试验v0/(m∙s–1)试验结果计算结果误差
    SX/mmSY/mmSZ/mmαend/(°)SX/mmSY/mmSZ/mmαend/(°)ΔSX/mmΔSY/mmΔSZ/mmΔαend/(°)
    T2-8873 3.714.8–55.422.00.2 8.5–60.015.43.5 6.3–4.6 6.6
    T2-1389810.013.8–53.325.10.917.8–57.514.69.1–4.0–4.2 7.3
    T2-12920 5.342.7–57.543.31.437.2–59.136.13.9 5.5–1.6–15.8
    下载: 导出CSV

    表  5  计算弹体结构质量参数

    Table  5.   Computational parameters of the projectiles

    弹体2ar/mm2br/mmarCRHLp/mmL/mmm/gJx/(g·mm2)Jy/(g·mm2)Jz/(g·mm2)loc/mm
    1# 9.09.01.05.620.943.516.91876187615826.2
    2#10.89.01.25.620.943.517.01839187721724.3
    3#12.69.01.45.620.943.517.01847193027423.1
    4#14.59.01.65.620.943.517.11967210834423.4
    5#16.29.01.85.620.943.517.12091228941422.2
    6#18.09.02.05.620.943.517.02010226646821.2
    下载: 导出CSV
  • [1] WOO H J. Cavity expansion analysis of non-circular cross-sectional penetration problems [D]. Austin, USA: The University of Texas, 1997.
    [2] BLESS S J. Penetration mechanics of non-circular rods [J]. American Institute of Physics, 1996, 370(1): 1119–1122. DOI: 10.1063/1.50861.
    [3] 杜忠华, 曾国强, 余春祥, 等. 异型侵彻体垂直侵彻半无限靶板试验研究 [J]. 弹道学报, 2008, 20(1): 19–21.

    DU Z H, ZENG G Q, YU C X, et al. Experimental research of novel penetrator vertically penetrating semi-infinite target [J]. Journal of Ballistics, 2008, 20(1): 19–21.
    [4] 杜忠华, 朱建生, 王贤治, 等. 异型侵彻体垂直侵彻半无限靶板的分析模型 [J]. 兵工学报, 2009, 30(4): 403–407. DOI: 10.3321/j.issn:1000-1093.2009.04.005.

    DU Z H, ZHU J S, WANG X Z, et al. Analytical model on non-circular penetrator impacting semi-infinite target perpendicularly [J]. Acta Armamentarii, 2009, 30(4): 403–407. DOI: 10.3321/j.issn:1000-1093.2009.04.005.
    [5] 高光发, 李永池, 刘卫国, 等. 长杆弹截面形状对垂直侵彻深度的影响 [J]. 兵器材料科学与工程, 2011, 34(3): 5–8. DOI: 10.3969/j.issn.1004-244X.2011.03.002.

    GAO G F, LI Y C, LIU W G, et al. Influence of the cross-section shapes of long rod projectile on the vertical penetration depth [J]. Ordnace Marerial Science and Engineering, 2011, 34(3): 5–8. DOI: 10.3969/j.issn.1004-244X.2011.03.002.
    [6] PARTOM Y. The optimal velocity of constant kinetic energy constant L/D long rod projectiles [J]. International Journal of Impact Engineering, 1995, 17(4): 605–614. DOI: 10.1016/0734-743X(95)99884-T.
    [7] PARTOM Y, YAZIV D. Penetration of L/D=10 and 20 tungsten alloy projectiles into RHA targets [J]. American Institute of Physics, 1994, 309: 1801–1804. DOI: 10.1063/1.46345.
    [8] 荣光, 薛晓中, 孙传杰, 等. 异型弹芯斜侵彻靶板的数值分析 [J]. 弹道学报, 2009, 21(1): 9–12.

    RONG G, XUE X Z, SUN C J, et al. Numerical analysis of a non-circular cross-sectional projectile oblique penetrating into target [J]. Journal of Ballistics, 2009, 21(1): 9–12.
    [9] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.

    WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.
    [10] DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583.
    [11] ZHANG S, WU H J, ZHANG X X, et al. High-velocity penetration of concrete targets with three types of projectiles: experiments and analysis [J]. Latin American Journal of Solids and Structures, 2017, 14(9): 1614–1628. DOI: 10.1590/1679-78253753.
    [12] 刘子豪, 武海军, 高旭东, 等. 椭圆截面弹体侵彻混凝土阻力特性研究 [J]. 北京理工大学学报, 2019, 39(2): 135–141; 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.

    LIU Z H, WU H J, GAO X D, et al. Study on the resistance characteristics of elliptical cross-section projectile penetrating concrete [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 135–141; 146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.
    [13] 王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2020, 41(S2): 1–12. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.

    WANG H, WU H J, YAN L, et al. Failure mode of oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2020, 41(S2): 1–12. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.
    [14] 王浩, 潘鑫, 武海军, 等. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析 [J]. 爆炸与冲击, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.

    WANG H, PAN X, WU H J, et al. Energy dissipation analysis of elliptical truncated oval rigid projectile penetrating stiffened plate [J]. Explosion and Shock Waves, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.
    [15] GAO X D, LI Q M. Trajectory instability and convergence of the curvilinear motion of a hard projectile in deep penetration [J]. International Journal of Mechanical Sciences, 2017, 121: 123–142. DOI: 10.1016/j.ijmecsci.2016.12.021.
    [16] 高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析 [J]. 兵工学报, 2014, 35(S2): 33–39.

    GAO X D, LI Q M. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle [J]. Acta Armamentarii, 2014, 35(S2): 33–39.
    [17] 马兆芳, 段卓平, 欧卓成, 等. 弹体斜侵彻贯穿薄混凝土靶姿态变化实验和理论研究 [J]. 兵工学报, 2015, 36(S1): 248–254.

    MA Z F, DUAN Z P, OU Z C, et al. The experimental and theoretical research on attitude of projectile obliquely penetrating into thin concrete target [J]. Acta Armamentarii, 2015, 36(S1): 248–254.
    [18] CHEN X G, LU F Y, ZHANG D. Penetration trajectory of concrete targets by ogived steel projectiles−experiments and simulations [J]. International Journal of Impact Engineering, 2018, 120: 202–213. DOI: 10.1016/j.ijimpeng.2018.06.004.
    [19] WARREN T L, POORMON K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2001, 25(10): 993–1022. DOI: 10.1016/S0734-743X(01)00024-0.
    [20] WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
    [21] BERNARD R S, CREIGHTON D C. Projectile penetration in soil and rock: analysis for non-normal impact: SL-79-15 [R]. Vicksbury, USA: U. S. Army Engineer Waterways Experimental Station Soils and Pavements Laboratory, 1979.
    [22] BERNARD R S, CREIGHTON D C. Non-normal impact and penetration. analysis for hard targets and small angles of attack: SL-78-14 [R]. Vicksbury, USA: U. S. Army Engineer Waterways Experimental Station Soils and Pavements Laboratory, 1978.
    [23] FANG Q, KONG X Z, WU H, et al. Predictions of projectile penetration and perforation by DAFL with the free surface effect [C] // 12th International Conference on Structures Under Shock and Impact. Greece, 2012. DOI: 10.2495/SU120221.
    [24] FANG Q, KONG X Z, HONG J, et al. Prediction of projectile penetration and perforation by finite cavity expansion method with the free-surface effect [J]. Acta Mechanica Solida Sinica, 2014, 27(6): 597–611. DOI: 10.1016/S0894-9166(15)60005-2.
    [25] KONG X Z, FANG Q, HONG J, et al. Numerical study of the wake separation and reattachment effect on the trajectory of a hard projectile [J]. International Journal of Protective Structures, 2014, 5(1): 97–117. DOI: 10.1260/2041-4196.5.1.97.
    [26] 孔祥振, 方秦, 吴昊. 考虑靶体自由表面和开裂区影响的可变形弹体斜侵彻脆性材料的终点弹道分析 [J]. 兵工学报, 2014, 35(6): 814–821. DOI: 10.3969/j.issn.1000-1093.2014.06.010.

    KONG X Z, FANG Q, WU H. Terminal ballistics study of deformable projectile penetrating brittle material targets for free-surface and crack region effects [J]. Acta Armamentarii, 2014, 35(6): 814–821. DOI: 10.3969/j.issn.1000-1093.2014.06.010.
    [27] WEI H Y, ZHANG X F, LIU C, et al. Oblique penetration of ogive-nosed projectile into aluminum alloy targets [J]. International Journal of Impact Engineering, 2021, 148: 103745. DOI: 10.1016/j.ijimpeng.2020.103745.
    [28] FORRESTAL M J, WARREN T L. Penetration equations for ogive-nose rods into aluminum targets [J]. International Journal of Impact Engineering, 2008, 35(8): 727–730. DOI: 10.1016/j.ijimpeng.2007.11.002.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  557
  • HTML全文浏览量:  441
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 录用日期:  2022-01-13
  • 修回日期:  2021-09-17
  • 网络出版日期:  2022-02-10
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回