PP/CF增强珊瑚砂水泥基复合材料冲击压缩力学性能研究

郑志豪 任辉启 龙志林 郭瑞奇 蔡洋 黎智健

郑志豪, 任辉启, 龙志林, 郭瑞奇, 蔡洋, 黎智健. PP/CF增强珊瑚砂水泥基复合材料冲击压缩力学性能研究[J]. 爆炸与冲击, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297
引用本文: 郑志豪, 任辉启, 龙志林, 郭瑞奇, 蔡洋, 黎智健. PP/CF增强珊瑚砂水泥基复合材料冲击压缩力学性能研究[J]. 爆炸与冲击, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297
ZHENG Zhihao, REN Huiqi, LONG Zhilin, GUO Ruiqi, CAI Yang, LI Zhijian. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion And Shock Waves, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297
Citation: ZHENG Zhihao, REN Huiqi, LONG Zhilin, GUO Ruiqi, CAI Yang, LI Zhijian. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion And Shock Waves, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297

PP/CF增强珊瑚砂水泥基复合材料冲击压缩力学性能研究

doi: 10.11883/bzycj-2021-0297
基金项目: 国家自然科学基金(51971188);湖南省科技重大专项(2019GK1012);湖湘高层次人才聚集工程-创新团队项目(2019RS1059)
详细信息
    作者简介:

    郑志豪(1998- ),男,硕士研究生,zzhxtu@163.com

    通讯作者:

    任辉启(1953- ),男,博士,研究员,博士生导师,huiq_ren@163.com

  • 中图分类号: O346

A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites

  • 摘要: 在人工海水制备珊瑚砂水泥基复合材料中混杂加入碳纤维和聚丙烯纤维,得到4种不同纤维掺量的碳-聚丙烯混杂纤维增强珊瑚砂水泥基复合材料。采用直径100 mm的分离式Hopkinson压杆,对材料进行5种应变率下的冲击压缩试验,采用LS-DYNA进行相应的冲击压缩数值模拟。结果表明:(1) 试验应变率临界值为200 s−1,当试验应变率大于200 s−1时,混杂碳纤维和聚丙烯纤维所形成的纤维网络对试块的增韧效果加强;(2) 碳-聚丙烯混杂纤维增强珊瑚砂水泥基复合材料峰值应力具有明显的应变率效应,且动态增强因子对应变率的敏感程度较高;(3) 使用珊瑚砂细骨料导致试块内微裂纹和微空洞等缺陷较多,在珊瑚砂水泥基复合材料内混杂掺加碳纤维和聚丙烯纤维后,试块冲击抗压强度的提升有限,但珊瑚砂水泥基复合材料的抗冲击韧性显著提升;(4) 通过试验数据和参数调试确定了HJC模型的参数,试块峰值应力的模拟结果与试验结果的误差在5.97 %以内。
  • 图  1  圆柱体试块模具

    Figure  1.  Cylindrical test block mold

    图  2  圆柱体试块

    Figure  2.  Cylinder test block

    图  3  材料严重剥落

    Figure  3.  Severe material spalling of test block

    图  4  外观较为完整

    Figure  4.  Complete appearance of test block

    图  5  分离式Hopkinson压杆试验装置

    Figure  5.  Split Hopkinson pressure bar test device

    图  6  入射波应力曲线

    Figure  6.  Stress curves of incident waves

    图  7  初始应变波

    Figure  7.  Initial strain waves

    图  8  应力平衡验证

    Figure  8.  Verification of stress balance

    图  9  应力-应变曲线

    Figure  9.  Stress-strain curves

    图  10  峰值应力与应变率的关系

    Figure  10.  Relations between peak stress and strain rate

    图  11  动态增强因子与应变率的关系

    Figure  11.  Relations between dynamic increase factor and strain rate

    图  12  入射波能量与应变率的关系

    Figure  12.  Relations between incident wave energy and strain rate

    图  13  耗散能量与应变率的关系

    Figure  13.  Relations between energy dissipation and strain rate

    图  14  耗散能量与入射波能量的关系

    Figure  14.  Relations between energy dissipation and incident wave energy

    图  15  SHPB有限元模型

    Figure  15.  A finite element model of the SHPB

    图  16  PP/CF增强珊瑚砂水泥基复合材料的应力-应变曲线

    Figure  16.  Stress-strain curves of the carbon-polypropylene hybrid fiber reinforced coral sand cement-based composites

    表  1  碳纤维和聚丙烯纤维的性能参数

    Table  1.   Properties of carbon fiber and polypropylene fiber

    原材料密度/(g·cm−3)长度/mm直径/μm弹性模量/GPa抗拉强度/MPa
    碳纤维1.75127.02283 500
    聚丙烯纤维0.911932.7 4.236 469
    下载: 导出CSV

    表  2  PP/CF增强珊瑚砂水泥基复合材料的配比

    Table  2.   Proportion of carbon-polypropylene hybrid fiber reinforced coral sand cement-based composites

    复合材料w/(kg·m−3)水胶比塌落度/mm
    水泥粉煤灰珊瑚砂人工海水减水剂碳纤维聚丙烯纤维
    14504501 0802259000.250
    24504501 08022595.251.820.2570
    34504501 080225910.501.820.2565
    44504501 080225915.751.820.2560
    下载: 导出CSV

    表  3  不同龄期试块的静态抗压强度

    Table  3.   Static compressive strengths of test blocks at different ages

    试块龄期/d静态抗压强度/MPa强度升降/%
    1737.640
    2840.670
    2734.80−7.54
    2835.11−13.67
    3739.524.99
    2842.063.41
    4747.6426.57
    2848.3118.78
    下载: 导出CSV

    表  4  PP/CF增强珊瑚砂水泥基复合材料的HJC模型参数

    Table  4.   HJC model parameters of the carbon-polypropylene hybrid fiber reinforced coral sand cement-based composites

    ρ/(g·cm−3)G/GPaABfc/MPaCNSmaxT/MPaD1
    2.1210.660.621.6048.310.006 50.6174.0090.04
    D2εf,minpc/MPaμcpl/MPaμlK1/GPaK2/GPaK3/GPaSf
    1.00.0116.100.0018000.1851712080.002
    下载: 导出CSV

    表  5  数值模拟结果有效性验证

    Table  5.   A validation of numerical simulation results

    $ \dot \varepsilon $/s−1fc/MPaσp/MPaησ/%εpηε/%
    试验模拟试验模拟
    113.0348.3160.1263.715.970.01030.009210.68
    157.8848.3172.7173.721.390.00680.00737.35
    200.3948.3186.7687.340.670.00880.010215.90
    222.7448.3198.89104.285.450.00680.00691.47
    下载: 导出CSV
  • [1] 岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土动态冲击性能试验研究 [J]. 材料导报, 2019, 33(16): 2697–2703. DOI: 10.11896/cldb.18070094.

    YUE C J, YU H F, MA H Y, et al. Experiment study on dynamic impact properties of coral aggregate seawater concrete [J]. Materials Reports, 2019, 33(16): 2697–2703. DOI: 10.11896/cldb.18070094.
    [2] 达波, 余红发, 麻海燕, 等. 南海岛礁普通混凝土结构耐久性的调查研究 [J]. 哈尔滨工程大学学报, 2016, 37(8): 1034–1040. DOI: 10.11990/jheu.201505051.

    DA B, YU H F, MA H Y, et al. Investigation of durability of ordinary concrete structures in the South China Sea [J]. Journal of Harbin Engineering University, 2016, 37(8): 1034–1040. DOI: 10.11990/jheu.201505051.
    [3] 达波, 余红发, 麻海燕, 等. 南海海域珊瑚混凝土结构的耐久性影响因素 [J]. 硅酸盐学报, 2016, 44(2): 253–260. DOI: 10.14062/j.issn.0454-5648.2016.02.11.

    DA B, YU H F, MA H Y, et al. Factors influencing durability of coral concrete structure in the South China Sea [J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 253–260. DOI: 10.14062/j.issn.0454-5648.2016.02.11.
    [4] 旷杜敏, 龙志林, 周益春, 等. 珊瑚礁岩土材料的物理力学性能研究综述 [J]. 湘潭大学自然科学学报, 2018, 40(5): 108–126. DOI: 10.13715/j.cnki.nsjxu.2018.05.017.

    KUANG D M, LONG Z L, ZHOU Y C, et al. A review of the physical and mechanical properties of coral reef [J]. Natural Science Journal of Xiangtan University, 2018, 40(5): 108–126. DOI: 10.13715/j.cnki.nsjxu.2018.05.017.
    [5] 谭国金, 朱德祺, 梁春雨, 等. 桥梁用聚丙烯纤维增强水泥基复合材料的力学性能 [J]. 吉林大学学报(工学版), 2020, 50(4): 1396–1402. DOI: 10.13229/j.cnki.jdxbgxb20190914.

    TAN G J, ZHU D Q, LIANG C Y, et al. Mechanical properties of polypropylene fiber reinforced engineering cementitious composites for bridges [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1396–1402. DOI: 10.13229/j.cnki.jdxbgxb20190914.
    [6] SINGH S, SHUKLA A, BROWN R. Pullout behavior of polypropylene fibers from cementitious matrix [J]. Cement and Concrete Research, 2004, 34(10): 1919–1925. DOI: 10.1016/j.cemconres.2004.02.014.
    [7] LI V C, WANG S X, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2001, 98(6): 483–492.
    [8] 严少华, 李志成, 王明洋, 等. 高强钢纤维混凝土冲击压缩特性试验研究 [J]. 爆炸与冲击, 2002, 22(3): 237–241.

    YAN S H, LI Z C, WANG M Y, et al. Dynamic compressive behaivour of high-strength steel fiber reiforced concrete [J]. Explosion and Shock Waves, 2002, 22(3): 237–241.
    [9] 谢金, 杨伟军. 碳纤维增强水泥基复合材料的制备及热电性能研究 [J]. 功能材料, 2020, 51(4): 4148–4152,4159. DOI: 10.3969/j.issn.1001-9731.2020.04.025.

    XIE J, YANG W J. Preparation and thermoelectric properties of carbon fiber reinforced cement-based composite [J]. Journal of Functional Materials, 2020, 51(4): 4148–4152,4159. DOI: 10.3969/j.issn.1001-9731.2020.04.025.
    [10] LIU G J, BAI E L, XU J Y, et al. Dynamic compressive mechanical properties of carbon fiber-reinforced polymer concrete with different polymer-cement ratios at high strain rates [J]. Construction and Building Materials, 2020, 261: 119995. DOI: 10.1016/j.conbuildmat.2020.119995.
    [11] 张娜, 周健, 徐名凤, 等. 玄武岩纤维高延性水泥基复合材料的动态力学性能 [J]. 爆炸与冲击, 2020, 40(5): 053101. DOI: 10.11883/bzycj-2019-0351.

    ZHANG N, ZHOU J, XU M F, et al. Dynamic mechanical properties of basalt fiber engineered cementitious composites [J]. Explosion and Shock Waves, 2020, 40(5): 053101. DOI: 10.11883/bzycj-2019-0351.
    [12] PAKRAVAN H R, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers [J]. Construction and Building Materials, 2016, 112: 739–746. DOI: 10.1016/j.conbuildmat.2016.02.112.
    [13] 郭瑞奇, 任辉启, 张磊, 等. 分离式大直径Hopkinson杆实验技术研究进展 [J]. 兵工学报, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.

    GUO R Q, REN H Q, ZHANG L, et al. Research progress of large-diameter split Hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.
    [14] 周广宇, 胡时胜. 高g值加速度发生器中的波形整形技术 [J]. 爆炸与冲击, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.

    ZHOU G Y, HU S S. Pulse-shaping techniques of high-g-value acceleration generators [J]. Explosion and Shock Waves, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.
    [15] 果春焕, 周培俊, 陆子川, 等. 波形整形技术在Hopkinson杆实验中的应用 [J]. 爆炸与冲击, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.

    GUO C H, ZHOU P J, LU Z C, et al. Application of pulse shaping technique in Hopkinson bar experiments [J]. Explosion and Shock Waves, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.
    [16] SONG B, CHEN W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials [J]. Experimental Mechanics, 2004, 44(3): 300–312. DOI: 10.1007/BF02427897.
    [17] MA H, YUE C, YU H, et al. Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete [J]. International Journal of Impact Engineering, 2020, 137: 103466. DOI: 10.1016/j.ijimpeng.2019.103466.
    [18] 张聪, 余志辉, 韩世诚, 等. 混杂纤维增强应变硬化水泥基复合材料的压缩本构关系 [J]. 复合材料学报, 2020, 37(5): 1221–1226. DOI: 10.13801/j.cnki.fhclxb.20190823.002.

    ZHANG C, YU Z H, HAN S C, et al. Compression constitutive relation of hybrid fiber reinforced strain hardening cementitous composites [J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1221–1226. DOI: 10.13801/j.cnki.fhclxb.20190823.002.
    [19] 徐世烺, 陈超, 李庆华, 等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究 [J]. 工程力学, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.

    XU S L, CHEN C, LI Q H, et al. Numerical simulation on dynamic compressive behavior of ultra-high toughness cementitious-composites [J]. Engineering Mechanics, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.
    [20] 王道荣, 胡时胜. 骨料对混凝土材料冲击压缩行为的影响 [J]. 实验力学, 2002, 17(1): 23–27. DOI: 10.3969/j.issn.1001-4888.2002.01.004.

    WANG D R, HU S S. Influence of aggregate on the compression properties of concrete under impact [J]. Journal of Experimental Mechanics, 2002, 17(1): 23–27. DOI: 10.3969/j.issn.1001-4888.2002.01.004.
    [21] 董凯, 任辉启, 阮文俊, 等. 珊瑚砂应变率效应研究 [J]. 爆炸与冲击, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.

    DONG K, REN H Q, RUAN W J, et al. Study on strain rate effect of coral sand [J]. Explosion and Shock Waves, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.
    [22] LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(6): 187–197. DOI: 10.1016/0148-9062(76)91285-7.
    [23] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.

    REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
    [24] 郭瑞奇, 任辉启, 龙志林, 等. 大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究 [J]. 爆炸与冲击, 2020, 40(9): 093101. DOI: 10.11883/bzycj-2020-0015.

    GUO R Q, REN H Q, LONG Z L, et al. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models [J]. Explosion and Shock Waves, 2020, 40(9): 093101. DOI: 10.11883/bzycj-2020-0015.
    [25] 郭瑞奇, 任辉启, 张磊, 等. 基于混凝土细观骨料模型的SHPB仿真模拟研究 [J]. 振动与冲击, 2019, 38(22): 107–116. DOI: 10.13465/j.cnki.jvs.2019.22.015.

    GUO R Q, REN H Q, ZHANG L, et al. Simulation for SHPB tests based on a mesoscopic concrete aggregate model [J]. Journal of Vibration and Shock, 2019, 38(22): 107–116. DOI: 10.13465/j.cnki.jvs.2019.22.015.
    [26] 刘海峰, 韩莉. 冲击荷载作用下混凝土动态力学性能数值模拟研究 [J]. 固体力学学报, 2015, 36(2): 145–153. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.007.

    LIU H F, HAN L. Numerical simulation research on dynamic mechanical behaviors of concrete subjected to impact loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 145–153. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.007.
    [27] 张凤国, 李恩征. 混凝土撞击损伤模型参数的确定方法 [J]. 弹道学报, 2001, 13(4): 12–16, 23. DOI: 10.3969/j.issn.1004-499X.2001.04.003.

    ZHANG F G, LI E Z. A method to determine the parameters of the model for concrete impact and damage [J]. Journal of Ballistics, 2001, 13(4): 12–16, 23. DOI: 10.3969/j.issn.1004-499X.2001.04.003.
    [28] 吴赛, 赵均海, 王娟, 等. 基于砼SHPB试验数值分析的HJC模型参数研究 [J]. 计算力学学报, 2015, 32(6): 789–795. DOI: 10.7511/jslx201506012.

    WU S, ZHAO J H, WANG J, et al. Study on parameters of HJC constitutive model based on numerical simulation of concrete SHPB test [J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 789–795. DOI: 10.7511/jslx201506012.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  172
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2021-11-19
  • 网络出版日期:  2022-06-10
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回