几种常用炸药的爆压与爆轰反应区精密测量

舒俊翔 裴红波 黄文斌 张旭 郑贤旭

舒俊翔, 裴红波, 黄文斌, 张旭, 郑贤旭. 几种常用炸药的爆压与爆轰反应区精密测量[J]. 爆炸与冲击, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305
引用本文: 舒俊翔, 裴红波, 黄文斌, 张旭, 郑贤旭. 几种常用炸药的爆压与爆轰反应区精密测量[J]. 爆炸与冲击, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305
SHU Junxiang, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives[J]. Explosion And Shock Waves, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305
Citation: SHU Junxiang, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives[J]. Explosion And Shock Waves, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305

几种常用炸药的爆压与爆轰反应区精密测量

doi: 10.11883/bzycj-2021-0305
基金项目: 国家自然科学基金(11602248);科学挑战专题(TZ2018001)
详细信息
    作者简介:

    舒俊翔(1992- ),男,理学学士,助理研究员,shujx678@163.com

    通讯作者:

    裴红波(1987- ),男,博士,副研究员,hongbo2751@sina.com

  • 中图分类号: O381;TJ55

Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives

  • 摘要: 为了获得几种常用炸药的爆压和反应区宽度数据,采用激光干涉测试技术对TNT、PETN、RDX、HMX、TATB和CL-20炸药的稳态爆轰波界面粒子速度进行了测试,获得了高精度的界面粒子速度时程曲线,利用阻抗匹配公式计算得到了炸药的爆压。结果表明:PETN、RDX、HMX和CL-20等理想炸药的界面粒子速度曲线存在较明显的拐点,爆轰反应区较窄,反应时间为7~15 ns。TNT和TATB炸药由于存在碳凝聚慢反应过程,界面粒子速度曲线没有明显的拐点,爆轰反应时间分别为(100±15) ns和(255±20) ns。初步的不确定度分析表明,激光干涉法测试爆压的相对扩展不确定度为4.4%(包含因子k=2)。
  • 图  1  确定CJ点对应的界面粒子速度的方法

    Figure  1.  The methods for determining the interfacial particle velocity at the CJ point

    图  2  实验装置示意图

    Figure  2.  Schematic of the experimental apparatus

    图  3  采用FFT得到的TNT炸药爆轰波界面粒子速度谱

    Figure  3.  Velocity spectrogram of TNT analyzed by the FFT method

    图  4  TNT炸药的界面粒子速度历程

    Figure  4.  Interface velocity history for TNT

    图  5  RDX-1炸药的界面粒子速度历程

    Figure  5.  Interface velocity history for RDX-1

    图  6  不同厚度的RDX-2炸药样品的界面粒子速度历程

    Figure  6.  Interface velocity histories for RDX-2 explosive samples with different thicknesses

    图  7  RDX-3炸药的界面粒子速度历程

    Figure  7.  Interface velocity histories for RDX-3

    图  8  PETN炸药的界面粒子速度历程

    Figure  8.  Interface velocity history for PETN

    图  9  HMX炸药速度频谱

    Figure  9.  Velocity spectrograms of HMX analyzed by the FFT method

    图  10  HMX炸药的界面粒子速度历程

    Figure  10.  Interface velocity histories for HMX

    图  11  TATB炸药速度频谱图

    Figure  11.  Velocity spectrogram of TATB analyzed by FFT method

    图  12  TATB炸药的界面粒子速度历程

    Figure  12.  Interface velocity histories for TATB

    图  13  TATB炸药的界面粒子加速度历程

    Figure  13.  Interface particle acceleration history for TATB

    图  14  CL-20炸药的界面粒子速度历程

    Figure  14.  Interface velocity histories for CL-20

    表  1  炸药反应区参数

    Table  1.   Detailed parameters for the explosive reaction zone

    炸药组分ρ0/(g·cm−3ρTMD/(g·cm−3DCJ/(m·s−1τ/nspCJ/GPapVN/GPapVN/ pCJγ
    TNTTNT1.6201.6547 005100±1520.129.41.462.95
    RDX-1RDX/黏结剂(96.5/3.5)1.6501.7708 18714±327.736.01.302.99
    RDX-2RDX/黏结剂(83/17)1.6501.6728 11027±526.535.01.323.10
    RDX-3RDX1.4901.8167 81012±324.82.66
    RDX-3RDX1.5701.8168 09212±327.62.72
    RDX-3RDX1.6701.8168 44512±330.42.92
    PETNRDX/黏结剂 (95/5)1.6451.6998 0507±226.137.91.453.08
    HMXHMX/黏结剂 (95/5)1.8601.8898 84010±236.848.01.302.95
    TATBTATB/黏结剂(95/5)1.8981.9157 665255±2029.340.31.382.81
    CL-20CL-20/黏结剂 (95/5)1.9202.0108 98015±437.946.41.223.09
    下载: 导出CSV
  • [1] MENIKOFF R. Detonation waves in PBX 9501 [J]. Combustion Theory and Modelling, 2006, 10(6): 1003–1021. DOI: 10.1080/13647830600851754.
    [2] MENIKOFF R, SHAW M S. The SURF model and the curvature effect for PBX 9502 [J]. Combustion Theory and Modelling, 2012, 16(6): 1140–1169. DOI: 10.1080/13647830.2012.713994.
    [3] HOBBS M L, SCHMITT R G, MOFFAT H K. JCZS3: an improved database for EOS calculations [C]//Proceedings of the 16th International Detonation Symposium. Cambridge, MD, 2018.
    [4] TARVER C M. Jones-Wilkins-Lee unreacted and reaction product equations of state for overdriven detonations in octogen- and triaminotrinitrobenzene-based plastic-bonded explosives [J]. The Journal of Physical Chemistry A, 2020, 124(7): 1399–1408. DOI: 10.1021/acs.jpca.9b10804.
    [5] 赵艳红, 段素青, 刘海风, 等. RDX炸药爆轰产物物态方程 [J]. 高压物理学报, 2015, 29(1): 47–51. DOI: 10.11858/gywlxb.2015.01.008.

    ZHAO Y H, DUAN S Q, LIU H F, et al. Equation of state of detonation products for RDX explosive [J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 47–51. DOI: 10.11858/gywlxb.2015.01.008.
    [6] 薛彭寿, 王淑萍. 大药量水箱法测定炸药爆轰压力的研究 [J]. 火炸药, 1992(2): 10–19.

    XUE P S, WANG S P. A study on aquarium test for the detonation pressure with large quantity of explosive [J]. Chinese Journal of Explosives and Propellants, 1992(2): 10–19.
    [7] 徐康, 于德洋, 许云祥, 等. 水箱法: 一种可用于小药量测定炸药爆轰压力的方法 [J]. 爆炸与冲击, 1981, 1(2): 89–95.

    XU K, YU D Y, XU Y X, et al. Aquarium test-a method for determination of the detonation pressure with small quantity of explosive [J]. Explosion and Shock Waves, 1981, 1(2): 89–95.
    [8] 吴国栋. 炸药爆轰参数的测量 [J]. 爆炸与冲击, 1987, 7(4): 367–374.

    WU G D. Measurements of detonation parameters for explosives [J]. Explosion and Shock Waves, 1987, 7(4): 367–374.
    [9] 熊昌彦. 电磁法和压阻法同时测量爆压的探索 [J]. 爆炸与冲击, 1984, 4(3): 79–81.

    XIONG C Y. Measurement of detonation pressure using electromagnetic gauges and piezoresistors [J]. Explosion and Shock Waves, 1984, 4(3): 79–81.
    [10] 刘德海. 炸药爆压的测量方法及存在问题 [J]. 火炸药, 1980(4): 36–46.
    [11] 伊芳, 王桂兵. 利用传感器测量爆压的研究 [J]. 火炸药学报, 1997, 20(1): 59–61. DOI: 10.14077/j.issn.1007-7812.1997.01.019.

    YI F, WANG G B. A study on using transducer to measure the detonation pressure [J]. Chinese Journal of Explosives & Propellants, 1997, 20(1): 59–61. DOI: 10.14077/j.issn.1007-7812.1997.01.019.
    [12] 冯晓军, 王晓峰, 黄亚峰, 等. 铝粉含量对梯铝炸药爆压和冲击波参数的影响 [J]. 火炸药学报, 2009, 32(5): 1–4. DOI: 10.3969/j.issn.1007-7812.2009.05.001.

    FENG X J, WANG X F, HUANG Y F, et al. Effect of aluminium content on the detonation pressure and shock wave parameters of TNT/Al explosives [J]. Chinese Journal of Explosives & Propellants, 2009, 32(5): 1–4. DOI: 10.3969/j.issn.1007-7812.2009.05.001.
    [13] 王玮, 王建灵, 郭炜, 等. 铝含量对RDX基含铝炸药爆压和爆速的影响 [J]. 火炸药学报, 2010, 33(1): 15–18. DOI: 10.3969/j.issn.1007-7812.2010.01.004.

    WANG W, WANG J L, GUO W, et al. Influence of Al content on the detonation pressure and detonation velocity of RDX-based aluminized explosive [J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 15–18. DOI: 10.3969/j.issn.1007-7812.2010.01.004.
    [14] 聂少云, 高大元, 文雯, 等. 添加剂对B炸药安全和爆轰性能的影响 [J]. 火炸药学报, 2014, 37(3): 20–25. DOI: 10.3969/j.issn.1007-7812.2014.03.005.

    NIE S Y, GAO D Y, WEN W, et al. Effect of supplement on safety and detonation properties of composition B [J]. Chinese Journal of Explosives & Propellants, 2014, 37(3): 20–25. DOI: 10.3969/j.issn.1007-7812.2014.03.005.
    [15] 王爱玉, 阮庆云, 陈海红, 等. 炸药试验方法: GJB 772A—97 [S]. 北京: 国防科工委军标出版发行部, 1997: 274–285.
    [16] 黄文斌, 赵锋, 谷岩, 等. 炸药爆压测试方法 激光干涉测试法: GJB 9250—2017 [S]. 北京: 国家军用标准出版发行部, 2017.
    [17] 孙承纬. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.
    [18] 赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010.

    ZHAO W G, ZHOU X M, LI J B, et al. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010.
    [19] SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives [J]. The Journal of Chemical Physics, 1984, 80(8): 3831–3844. DOI: 10.1063/1.447164.
    [20] LOBOIKO B G, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733. DOI: 10.1023/A:1002898505288.
    [21] TARVER C M. Detonation reaction zones in condensed explosives [J]. AIP Conference Proceedings, 2005, 845(1): 1026–1029. DOI: 10.1063/1.2263497.
    [22] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Detonation wave profiles in HMX based explosives [J]. AIP Conference Proceedings, 1998, 429(1): 739. DOI: 10.1063/1.55674.
    [23] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Progress in measuring detonation wave profiles in PBX9501 [C]//Proceedings of the 11th International Detonation Symposium. Snowmass, 1998.
    [24] 裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490. DOI: 10.11883/bzycj-2017-0379.

    PEI H B, HUANG W B, QIN J C, et al. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490. DOI: 10.11883/bzycj-2017-0379.
    [25] 陈鲁英, 杨培进, 张林军, 等. CL-20炸药性能研究 [J]. 火炸药学报, 2003, 26(3): 65–67. DOI: 10.3969/j.issn.1007-7812.2003.03.019.

    CHEN L Y, YANG P J, ZHANG L J, et al. Study of the performance of explosive CL-20 [J]. Chinese Journal of Explosives & Propellants, 2003, 26(3): 65–67. DOI: 10.3969/j.issn.1007-7812.2003.03.019.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  277
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-11-02
  • 网络出版日期:  2022-03-30
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回