Study on the effect of Al(OH)3 on the flame propagation characteristics of polyacrylonitrile powder
-
摘要: 为研究Al(OH)3粉体抑爆剂对聚丙烯腈(polyacrylonitrile, PAN)粉尘爆炸的抑制作用,利用透明管道爆炸传播测试系统,研究不同含量的Al(OH)3对PAN粉尘爆炸火焰传播形态、温度等参数的影响,并采用扫描电镜、热重分析仪、傅里叶红外光谱仪研究Al(OH)3抑制PAN粉尘爆炸的微观特征,总结出Al(OH)3对PAN粉尘爆炸的抑制机理。测试结果表明,随着Al(OH)3质量分数的增加,PAN粉尘爆燃的最大火焰传播距离和传播速度逐渐减小。同时压力监控及温度监控结果显示,随着Al(OH)3质量分数的增加,PAN粉尘的最大爆炸压力及最大温度均逐渐减小,由此验证了Al(OH)3对PAN粉尘爆炸的抑制作用,且60%质量比的Al(OH)3的抑制效果最好。通过对PAN粉尘爆炸固态产物表征及热分析的研究,从物理和化学两个方面分析了Al(OH)3对PAN粉尘火焰的抑制机理,物理抑制包括包覆、吸热降温、气体惰化3种方式,化学抑制主要通过消耗维持燃烧爆炸连锁反应的关键自由基•O和•OH减少了自由基•H、•OH与•O之间的放热反应。Abstract: In order to study the inhibitory effect of Al(OH)3 powder explosion suppressant on polyacrylonitrile (PAN) powder explosion, a transparent pipeline explosion propagation test system was used to study the influence of mass fractions of Al(OH)3 on the flame propagation shape, temperature and other parameters of PAN powder explosion. The scanning electron microscope, thermogravimetric analyzer and Fourier infrared spectrometer were used to study the microscopic characteristics of Al(OH)3 inhibiting PAN powder explosion, and the mechanism of Al(OH)3 inhibiting PAN powder explosion was summarized. The results show that the maximum flame propagation distance and the velocity of PAN powder deflagration gradually decrease with the increase of the mass fraction of Al(OH)3. At the same time, pressure monitoring and temperature monitoring showed that with the increase of the mass fraction of Al(OH)3, the maximum explosion pressure and maximum temperature of PAN powder gradually decrease. Thus, the inhibition effect of Al(OH)3 on PAN powder explosion was verified, and the inhibition effect of Al(OH)3 at mass ratio of 60% was the best. Through the study of characterization and thermal analysis of PAN powder explosion solid products, the inhibition mechanism of PAN powder flame by Al(OH)3 was analyzed from both physical and chemical aspects. Physical suppression includes coating, endothermic cooling, and gas inerting. Chemical suppression is mainly by reducing the exothermic reaction between free radicals •H, •OH and •O through consuming the key free radicals O• and OH• that maintain the chain reaction of combustion and explosion.
-
Key words:
- Al(OH)3 /
- polyacrylonitrile (PAN) /
- flame characteristics /
- inhibitor /
- thermogravimetric analysis
-
表 1 混合粉尘物质比例
Table 1. Material proportions of the mixed powder
Al(OH)3质量比/% PAN质量/g Al(OH)3质量/g 0 6 0 20 6 1.2 40 6 2.4 60 6 3.6 70 6 4.2 -
[1] 多英全, 刘垚楠, 胡馨升. 2009~2013年我国粉尘爆炸事故统计分析研究 [J]. 中国安全生产科学技术, 2015, 11(2): 186–190. DOI: 10.11731/j.issn.1673-193x.2015.02.030.DUO Y Q, LIU Y N, HU X S. Statistical analysis on dust explosion accidents occurring in China during 2009−2013 [J]. Journal of Safety Science and Technology, 2015, 11(2): 186–190. DOI: 10.11731/j.issn.1673-193x.2015.02.030. [2] 钱松. 粉尘爆炸事故的统计数据分析 [J]. 电气防爆, 2018(3): 1–3; 6. DOI: 10.14023/j.cnki.dqfb.2018.03.001.QIAN S. Statistical analysis of dust explosion accidents [J]. Electric Explosion Protection, 2018(3): 1–3; 6. DOI: 10.14023/j.cnki.dqfb.2018.03.001. [3] 刘贞堂, 周西方, 林松, 等. 我国工业粉尘爆炸事故统计及趋势分析 [J]. 消防科学与技术, 2020, 39(6): 879–882. DOI: 10.3969/j.issn.1009-0029.2020.06.039.LIU Z T, ZHOU X F, LIN S, et al. Statistics and trend analysis of industrial dust explosion accidents in China [J]. Fire Science and Technology, 2020, 39(6): 879–882. DOI: 10.3969/j.issn.1009-0029.2020.06.039. [4] 覃小玲, 李晓泉. 粮食粉尘爆炸事故统计分析 [J]. 工业安全与环保, 2020, 46(5): 78–82. DOI: 10.3969/j.issn.1001-425X.2020.05.018.QIN X L, LI X Q. Statistical analysis of accidents in grain dust explosion [J]. Industrial Safety and Environmental Protection, 2020, 46(5): 78–82. DOI: 10.3969/j.issn.1001-425X.2020.05.018. [5] 刘静如, 张帆, 徐伟, 等. 化工粉尘爆炸事故原因分析 [J]. 安全、健康和环境, 2015, 15(11): 1–3. DOI: 10.3969/j.issn.1672-7932.2015.11.001.LIU J R, ZHANG F, XU W, et al. Analysis of the causes of chemical dust explosion accidents [J]. Safety, Health & Environment, 2015, 15(11): 1–3. DOI: 10.3969/j.issn.1672-7932.2015.11.001. [6] 刘彦. 解读十年粉尘爆炸数据 [J]. 中国消防, 2015(13): 34–35. [7] 王玉杰, 陈曦, 陈先锋, 等. 碳酸氢钠粉体粒径对铝粉火焰传播特性的影响 [J]. 中国安全科学学报, 2016, 26(3): 53–58. DOI: 10.16265/j.cnki.issn1003-3033.2016.03.009.WANG Y J, CHEN X, CHEN X F, et al. Effect of sodium bicarbonate particle size on characteristics of aluminum dust flame propagation [J]. China Safety Science Journal, 2016, 26(3): 53–58. DOI: 10.16265/j.cnki.issn1003-3033.2016.03.009. [8] 谢波, 王克全. 工业粉尘爆炸抑制技术研究现状及存在的问题 [J]. 矿业安全与环保, 2000, 27(1): 13–15,20. DOI: 10.3969/j.issn.1008-4495.2000.01.005.XIE B, WANG K Q. Study status of industrial dust explosion suppression techniques and existent problems [J]. Mining Safety & Environmental Protection, 2000, 27(1): 13–15,20. DOI: 10.3969/j.issn.1008-4495.2000.01.005. [9] 唐文文, 陈先锋, 牛奕, 等. NH4H2PO4和SiO2粉体对铝粉火焰传播特性的影响 [J]. 中国安全科学学报, 2017, 27(8): 44–49. DOI: 10.16265/j.cnki.issn1003-3033.2017.08.008.TANG W W, CHEN X F, NIU Y, et al. Effects of NH4H2PO4 and SiO2 power on propagation characteristics of aluminum dust flame [J]. China Safety Science Journal, 2017, 27(8): 44–49. DOI: 10.16265/j.cnki.issn1003-3033.2017.08.008. [10] YUASA S, ZHU Y, SOGO S. Ignition and combustion of aluminum in oxygen/nitrogen mixture streams [J]. Combustion and Flame, 1997, 108(4): 387–390. DOI: 10.1016/0010-2180(95)00104-2. [11] GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations: NASA SP-273 [R]. Springfield: NASA, 1976. [12] AMYOTTE P R, ECKHOFF R K. Dust explosion causation, prevention and mitigation: an overview [J]. Journal of Chemical Health and Safety, 2010, 17(1): 15–28. DOI: 10.1016/j.jchas.2009.05.002. [13] 员亚龙, 陈先锋, 袁必和, 等. 聚磷酸铵对糖粉火焰传播特性的影响研究 [J]. 中国安全科学学报, 2019, 29(11): 71–76. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.012.YUAN Y L, CHEN X F, YUAN B H, et al. Effects of ammonium polyphosphate on flame propagation characteristics of sugar dust [J]. China Safety Science Journal, 2019, 29(11): 71–76. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.012. [14] 覃小玲, 李晓泉. 惰性粉体对蔗糖粉尘最小点火能的影响研究 [J]. 中国安全生产科学技术, 2019, 15(11): 72–77. DOI: 10.11731/j.issn.1673-193x.2019.11.011.QIN X L, LI X Q. Research on the influence of inert powder on the minimum ignition energy of sucrose dust [J]. Journal of Safety Science and Technology, 2019, 15(11): 72–77. DOI: 10.11731/j.issn.1673-193x.2019.11.011. [15] GIERAS M. Studies on process of dust explosion suppression by water spray [J]. Archivum Combustionis, 2011, 31(1/2): 63–77. [16] 苏爱玲. 阻燃剂氢氧化铝生产方法及性能研究 [J]. 河南化工, 2012, 29(5): 17–19. DOI: 10.3969/j.issn.1003-3467.2012.05.027.SU A L. Production method and application performance research of Al(OH)3 flame retardant [J]. Henan Chemical Industry, 2012, 29(5): 17–19. DOI: 10.3969/j.issn.1003-3467.2012.05.027. [17] 张跃, 陈英斌, 刘建武, 等. 聚丙烯腈基碳纤维的研究进展 [J]. 纤维复合材料, 2009, 26(1): 7–10. DOI: 10.3969/j.issn.1003-6423.2009.01.002.ZHANG Y, CHEN Y B, LIU J W, et al. Research development of PAN-based carbon fibers [J]. Fiber Composites, 2009, 26(1): 7–10. DOI: 10.3969/j.issn.1003-6423.2009.01.002. [18] 李青山, 沈新元. 腈纶生产工学 [M]. 北京: 中国纺织出版社, 2000. [19] 张顺, 陈洞, 刘杰, 等. 带型聚丙烯腈纤维制备及其预氧化反应特性研究 [J]. 化工新型材料, 2019, 47(12): 156–159.ZHANG S, CHEN D, LIU J, et al. Preparation and pre-oxidation characteristics of strip polyacrylonitrile fiber [J]. New Chemical Materials, 2019, 47(12): 156–159. [20] WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure [J]. Journal of Hazardous Materials, 2017, 335: 84–91. DOI: 10.1016/j.jhazmat.2017.04.031. [21] 余明高, 王天政, 游浩. 粉体材料热特性对瓦斯抑爆效果影响的研究 [J]. 煤炭学报, 2012, 37(5): 830–835. DOI: 10.13225/j.cnki.jccs.2012.05.025.YU M G, WANG T Z, YOU H. Study on gas explosion suppression influence of thermal properties of powder [J]. Journal of China Coal Society, 2012, 37(5): 830–835. DOI: 10.13225/j.cnki.jccs.2012.05.025. [22] GE J, XU K L, ZHENG X, et al. The main challenges of safety science [J]. Safety Science, 2019, 118: 119–125. DOI: 10.1016/j.ssci.2019.05.006. [23] LIU B, ZHANG Y S, ZHANG Y Y, et al. Experimental study on multiple explosions during the development and utilization of oil shale dust [J]. Shock and Vibration, 2019, 2019: 8679724. DOI: 10.1155/2019/8679724. [24] CHEN S K, XU K L, ZHENG X, et al. Linear and nonlinear analyses of normal and fatigue heart rate variability signals for miners in high-altitude and cold areas [J]. Computer Methods and Programs in Biomedicine, 2020, 196: 105667. DOI: 10.1016/j.cmpb.2020.105667. [25] CHEN J S, ZHU L J, XIANG Y Z, et al. Effect of calcination temperature on structural properties and catalytic performance of novel amorphous NiP/Hβ catalyst for n-hexane isomerization [J]. Catalysts, 2020, 10(7): 811. DOI: 10.3390/catal10070811. [26] YAO X W, HU Y L, GE J, et al. A comprehensive study on influence of operating parameters on agglomeration of ashes during biomass gasification in a laboratory-scale gasification system [J]. Fuel, 2020, 276: 118083. DOI: 10.1016/j.fuel.2020.118083. [27] YUAN B H, FAN A, YANG M, et al. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios [J]. Polymer Degradation and Stability, 2017, 143: 42–56. DOI: 10.1016/j.polymdegradstab.2017.06.015. [28] LIU B, ZHANG Y Y, MENG X B, et al. Study on explosion characteristics of the inert substances at Longkou Oil Shale of China [J]. Process Safety and Environmental Protection, 2020, 136: 324–333. DOI: 10.1016/j.psep.2019.12.033.