Attenuation of blasting vibration in a railway tunnel
-
摘要: 基于Heelan短柱药包理论,引入等效作用半径的概念,得到内部瞬时激励荷载作用下爆破峰值振动速度的衰减模型方程,并通过量纲分析进行验证。结合下穿隧道爆破工程,研究不同雷管段位及不同炮孔类型对应的爆破峰值振动速度的衰减规律。此外,讨论球形装药、柱状装药条件下改进公式的药量形式表达式,结果显示,利用等效作用半径作为拟合参考变量可以综合考虑不同雷管段位及不同炮孔类型对爆破振动规律的影响。统计数据表明,利用改进公式得到的拟合效果最优,可以为类似隧道爆破振动研究提供参考。Abstract: In order to deeply explore the propagation and attenuation law of column charge blasting stress waves or seismic waves, and to improve the prediction model of the blasting peak vibration velocity, a theoretical study on the blasting peak vibration velocity was carried out. First of all, based on the Heelan short-column charge theory, the concept of the equivalent radius of action was introduced, and the attenuation equation for the blasting peak vibration velocity under the action of the internal instantaneous excitation load was obtained. Then, the concepts of the equivalent action radius and equivalent blasting load were applied to the theoretical derivation of the blasting peak vibration velocity. The attenuation laws of the blast-induced vibration in cutting hole sections and non-cutting hole sections were studied, respectively. Finally, based on the dimensional harmony theorem, the reliability and universality of the attenuation model were verified. Combined with an example of tunnel blasting project, the attenuation laws of the blasting peak vibration velocities corresponding to different segments of detonators and different types of blast holes were studied. The results show that the improved formula can well fit the peak velocities of the above two types of blasting vibrations, which can accurately reflect the transmission law of the tunnel blasting vibration. In addition, the expressions of the charge form of the improved formula under the conditions of spherical charge and columnar charge were discussed, and the prediction effects of various fitting models were compared. The comparison results show that using the equivalent radius of action as a fitting reference variable can comprehensively consider the influence of different detonator positions and different blast hole types on the blasting vibration attenuation law. The reference variables of the statistical data show that the fitting effect obtained by the improved formula is the best, which can provide a reference for similar research of tunnel blasting vibration.
-
模型 公式 Sadov’s formula vmax=k(Q1/3/R)α USBM vmax=k(Q1/2/R)α Indian Institute of Standards vmax=k(Q/R2/3)α Langefors, et al vmax=k(Q/R2/3)α/2 Ghosh, et al vmax=k(Q1/3/R)−αe−βR Roy vmax=kQ1/2/R+n Gupta, et al vmax=k(Q/R3/2)α/2e−βR 表 2 隧道爆破装药情况
Table 2. Charges for tunnel blasting
炮孔类型 炮孔深度/m 雷管段位 炮孔数量 单孔装药量/kg 总装药量/kg 掏槽孔 4.0 H1 16 2.7 43.2 辅助孔 3.5 H3 14 2.4 33.6 辅助孔 3.5 H5 17 1.8 30.6 辅助孔 3.5 H7 25 1.5 37.5 辅助孔 3.5 H9 30 1.5 45.0 周边孔 2.5 H11 25 1.2 30.0 底板孔 2.5 H13 2 2.1 4.2 合计 129 224.1 表 3 爆破峰值振动速度及相关参数
Table 3. Blasting peak vibration velocity and related parameters
测点 监测次序 爆心距/m 爆破峰值振动速度/(cm·s−1) 掏槽孔 辅助孔 周边孔 底板孔 H1 H3 H5 H7 H9 H11 H13 M5 1 27.58 1.99 1.04 1.22 1.29 1.58 0.84 0.38 M4 30.48 1.66 0.87 0.91 1.08 1.27 0.73 0.25 M3 36.89 1.54 0.72 0.46 0.89 1.23 0.62 0.20 M2 40.31 1.11 0.64 0.58 0.80 0.92 0.57 0.22 M1 49.24 0.98 0.56 0.48 0.61 0.76 0.46 0.23 M5 2 20.39 2.33 1.20 1.61 1.68 1.95 1.25 0.70 M4 21.54 2.22 1.03 1.24 1.65 1.67 0.99 0.48 M3 25.26 2.01 0.97 1.15 1.50 2.02 1.14 0.44 M2 28.28 1.96 0.88 0.91 1.16 1.35 0.85 0.34 M1 36.48 1.55 0.89 0.80 1.12 1.28 0.69 0.26 M5 3 30.55 1.86 0.85 1.14 1.15 1.35 0.65 0.27 M4 36.22 1.53 0.71 0.90 0.97 1.16 0.59 0.18 M3 42.16 1.46 0.67 0.65 0.84 1.01 0.46 0.16 M2 50.32 1.20 0.50 0.72 0.70 0.83 0.38 0.13 M1 57.84 0.92 0.45 0.63 0.64 0.74 0.33 0.12 M5 4 25.01 2.02 0.98 1.19 1.24 1.45 0.68 0.30 M4 31.33 1.62 0.86 1.18 1.12 1.32 0.63 0.27 M3 38.54 1.49 0.71 0.93 0.93 1.09 0.51 0.18 M2 41.66 1.30 0.69 0.86 0.88 1.02 0.42 0.15 M1 47.20 1.20 0.60 0.75 0.69 0.87 0.39 0.14 M5 5 29.02 1.92 0.90 1.15 1.18 1.41 0.62 0.26 M4 33.45 1.70 0.81 1.05 1.06 1.25 0.59 0.23 M3 38.04 1.52 0.73 0.93 0.94 1.11 0.50 0.17 M2 45.55 1.31 0.59 0.82 0.80 0.95 0.39 0.14 M1 50.03 1.17 0.56 0.75 0.73 0.83 0.32 0.10 表 4 爆破峰值振动速度采用式(21)的拟合效果
Table 4. Fitting effects of equation (21) for the blasting peak vibration velocity
炮孔类型 雷管段位 拟合方程 相关系数r2 掏槽孔 H1 vmax=30.205(rd/R)0.934 0.942 辅助孔 H3 vmax=10.755(rd/R)0.935 0.844 H5 vmax=13.401(rd/R)1.053 0.819 H7 vmax=11.764(rd/R)0.998 0.947 H9 vmax=10.692(rd/R)0.961 0.922 周边孔 H11 vmax=6.876(rd/R)1.124 0.940 底板孔 H13 vmax=3.721(rd/R)1.354 0.907 表 5 爆破峰值振动速度的拟合效果
Table 5. Fitting effects of the blasting peak vibration velocity
拟合公式 炮孔类型 拟合方程 相关系数r2 式(21) 掏槽孔 vmax= 30.205(rd/R)0.934 0.942 辅助孔 vmax=9.845(rd/R)0.916 0.875 周边孔 vmax=6.876(rd/R)1.124 0.940 底板孔 vmax=3.721(rd/R)1.354 0.907 式(28) 掏槽孔 vmax=10.957(Q1/3/R)0.851 0.896 辅助孔 vmax=5.197(Q1/3/R)0.694 0.646 周边孔 vmax=11.705(Q1/3/R)1.234 0.837 底板孔 vmax=26.762(Q1/3/R)1.534 0.789 式(29) 掏槽孔 vmax=7.308(Q1/2/R)0.682 0.788 辅助孔 vmax=3.016(Q1/2/R)0.567 0.446 周边孔 vmax= 5.812(Q1/2/R)1.234 0.878 底板孔 vmax=19.298(Q1/2/R)1.534 0.802 -
[1] 苏建遥. 小净距交叉隧道开挖爆破振动监测及控制技术研究 [D]. 河北张家口: 河北建筑工程学院, 2018.SU J Y. Research on monitiring and control technoligy of small clear distance cross tunnel blasting vibration [D]. Zhangjiakou, Hebei, China: Hebei University of Architecture, 2018. [2] 王海龙, 赵岩, 王永佳, 等. 新建京张高铁立体交叉隧道爆破振动控制研究 [J]. 铁道标准设计, 2018, 62(7): 130–134. DOI: 10.13238/j.issn.1004-2954.201710120003.WANG H L, ZHAO Y, WANG Y J, et al. Study on blasting vibration control of three-dimensional cross tunnel on Beijing to Zhangjiakou high-speed railway [J]. Railway Standard Design, 2018, 62(7): 130–134. DOI: 10.13238/j.issn.1004-2954.201710120003. [3] 杨学奇. 基于无中墙单洞法的连拱隧道设计与施工技术研究 [D]. 成都: 西南交通大学, 2019. DOI: 10.27414/d.cnki.gxnju.2019.000460.YANG X Q. Research on desing and construction technology of multi-arch tunnel based on the single-hole method without middle wall [D]. Chengdu, Sichuan, China: Southwest Jiaotong University, 2019. DOI: 10.27414/d.cnki.gxnju.2019.000460. [4] HUANG D, CUI S, LI X Q. Wavelet packet analysis of blasting vibration signal of mountain tunnel [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 72–80. DOI: 10.1016/j.soildyn.2018.11.025. [5] 单仁亮, 宋永威, 白瑶, 等. 基于小波包变换的爆破信号能量衰减特征研究 [J]. 矿业科学学报, 2018, 3(2): 119–128. DOI: 10.19606/j.cnki.jmst.2018.02.003.SHAN R L, SONG Y W, BAI Y, et al. Research on the energy attenuation characteristics of blasting vibration signals based on wavelet packet transformation [J]. Journal of Mining Science and Technology, 2018, 3(2): 119–128. DOI: 10.19606/j.cnki.jmst.2018.02.003. [6] 何理, 钟东望, 李鹏, 等. 下穿隧道爆破荷载激励下边坡振动预测及能量分析 [J]. 爆炸与冲击, 2020, 40(7): 075201. DOI: 10.11883/bzycj-2019-0255.HE L, ZHONG D W, LI P, et al. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel [J]. Explosion and Shock Waves, 2020, 40(7): 075201. DOI: 10.11883/bzycj-2019-0255. [7] 王海龙, 赵岩, 王海军, 等. 基于CEEMDAN-小波包分析的隧道爆破信号去噪方法 [J]. 爆炸与冲击, 2021, 41(5): 055202–137. DOI: 10.11883/bzycj-2020-0123.WANG H L, ZHAO Y, WANG H J, et al. De-noising method of tunnel blasting signal based on CEEMDAN decomposition-wavelet packet analysis [J]. Explosion and Shock Waves, 2021, 41(5): 055202–137. DOI: 10.11883/bzycj-2020-0123. [8] YU C, YUE H Z, LI H B, et al. Scale model test study of influence of joints on blasting vibration attenuation [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(1): 533–550. DOI: 10.1007/s10064-020-01944-2. [9] 朱正国, 孙明路, 朱永全, 等. 超小净距隧道爆破振动现场监测及动力响应分析研究 [J]. 岩土力学, 2012, 33(12): 3747–3752, 3759. DOI: 10.16285/j.rsm.2012.12.037.ZHU Z G, SUN M L, ZHU Y Q, et al. Field monitoring on blasting vibration and dynamic response of ultra-small spacing tunnels [J]. Rock and Soil Mechanics, 2012, 33(12): 3747–3752, 3759. DOI: 10.16285/j.rsm.2012.12.037. [10] QIN Q H, ZHANG J. Vibration control of blasting excavation of large cross-section highway tunnel over metro line [J]. Arabian Journal of Geosciences, 2020, 13(17): 868. DOI: 10.1007/s12517-020-05836-3. [11] JIANG N, ZHU B, HE X, et al. Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation [J]. Tunnelling and Underground Space Technology, 2020, 102: 103448. DOI: 10.1016/j.tust.2020.103448. [12] LU W B, LENG Z D, HU H R, et al. Experimental and numerical investigation of the effect of blast-generated free surfaces on blasting vibration [J]. European Journal of Environmental and Civil Engineering, 2018, 22(11): 1374–1398. DOI: 10.1080/19648189.2016.1262285. [13] 刘彦涛. 下穿寺庙隧道爆破振动影响的数值模拟与分析 [J]. 西安建筑科技大学学报(自然科学版), 2021, 53(2): 160–166. DOI: 10.15986/j.1006-7930.2021.02.002.LIU Y T. Numerical simulation and analysis of the influence of blasting vibration in the tunnel crossing under a temple [J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2021, 53(2): 160–166. DOI: 10.15986/j.1006-7930.2021.02.002. [14] ONGEN T, KARAKUS D, KONAK G, et al. Assessment of blast-induced vibration using various estimation models [J]. Journal of African Earth Sciences, 2018, 145: 267–273. DOI: 10.1016/j.jafrearsci.2018.05.004. [15] ZHAO Y, SHAN R L, WANG H L. Research on vibration effect of tunnel blasting based on an improved Hilbert-Huang transform [J]. Environmental Earth Sciences, 2021, 80(5): 206. DOI: 10.1007/s12665-021-09506-9. [16] PENG Y X, LIU G J, WU L, et al. Comparative study on tunnel blast-induced vibration for the underground cavern group [J]. Environmental Earth Sciences, 2021, 80(2): 68. DOI: 10.1007/s12665-020-09362-z. [17] JAYASINGHE B, ZHAO Z Y, CHEE A G T, et al. Attenuation of rock blasting induced ground vibration in rock-soil interface [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 770–778. DOI: 10.1016/j.jrmge.2018.12.009. [18] HUSTRULID W A. Blasting principles for open pit mining: general design concept [M]. Rotterdam, the Netherlands: Balkema Publishers, 1999. [19] 高启栋, 卢文波, 杨招伟, 等. 垂直孔爆破诱发地震波的成分构成及演化规律 [J]. 岩石力学与工程学报, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.GAO Q D, LU W B, YANG Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824. [20] YANG J H, CAI J Y, YAO C, et al. Comparative study of tunnel blast-induced vibration on tunnel surfaces and inside surrounding rock [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4747–4761. DOI: 10.1007/s00603-019-01875-9. [21] 卢文波, HUSTRULID W. 质点峰值振动速度衰减公式的改进 [J]. 工程爆破, 2002, 8(3): 1–4. DOI: 10.3969/j.issn.1006-7051.2002.03.001.LU W B, HUSTRULID W. An improvement to the equation for the attenuation of the peak particle velocity [J]. Engineering Blasting, 2002, 8(3): 1–4. DOI: 10.3969/j.issn.1006-7051.2002.03.001. [22] DENG X H, WANG J Y, WANG R, et al. Influence of blasting vibrations generated by tunnel construction on an existing road [J]. International Journal of Civil Engineering, 2020, 18(12): 1381–1393. DOI: 10.1007/s40999-020-00549-w. [23] 杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07. [24] 王海龙, 赵岩, 王永佳, 等. 草帽山隧道爆破振动监测与分析 [J]. 铁道建筑, 2017, 57(12): 67–70. DOI: 10.3969/j.issn.1003-1995.2017.12.18.WANG H L, ZHAO Y, WANG Y J, et al. Blasting vibration monitoring and analysis of Caomaoshan tunnel [J]. Railway Engineering, 2017, 57(12): 67–70. DOI: 10.3969/j.issn.1003-1995.2017.12.18. [25] 刘达, 卢文波, 陈明, 等. 隧洞钻爆开挖爆破振动主频衰减公式研究 [J]. 岩石力学与工程学报, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.LIU D, LU W B, CHEN M, et al. Attenuation formula of the dominant frequency of blasting vibration during tunnel excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311. [26] HASANIPANAH M, NADERI R, KASHIR J, et al. Prediction of blast-produced ground vibration using particle swarm optimization [J]. Engineering with Computers, 2017, 33(2): 173–179. DOI: 10.1007/s00366-016-0462-1. [27] GOU Y G, SHI X Z, ZHOU J, et al. Attenuation assessment of blast-induced vibrations derived from an underground mine [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104220. DOI: 10.1016/j.ijrmms.2020.104220. [28] MATIDZA M I, ZHANG J H, GANG H, et al. Assessment of blast-induced ground vibration at Jinduicheng molybdenum open pit mine [J]. Natural Resources Research, 2020, 29(2): 831–841. DOI: 10.1007/s11053-020-09623-5. [29] ZHAO Y, SHAN R L, WANG H L, et al. Regression analysis of the blasting vibration effect in cross tunnels [J]. Arabian Journal of Geosciences, 2021, 14(18): 1925. DOI: 10.1007/s12517-021-08257-y.