下穿铁路隧道爆破振动衰减规律研究

单仁亮 赵岩 王海龙 董捷 仝潇 李兆龙 王东升

单仁亮, 赵岩, 王海龙, 董捷, 仝潇, 李兆龙, 王东升. 下穿铁路隧道爆破振动衰减规律研究[J]. 爆炸与冲击, 2022, 42(8): 085201. doi: 10.11883/bzycj-2021-0324
引用本文: 单仁亮, 赵岩, 王海龙, 董捷, 仝潇, 李兆龙, 王东升. 下穿铁路隧道爆破振动衰减规律研究[J]. 爆炸与冲击, 2022, 42(8): 085201. doi: 10.11883/bzycj-2021-0324
SHAN Renliang, ZHAO Yan, WANG Hailong, DONG Jie, TONG Xiao, LI Zhaolong, WANG Dongsheng. Attenuation of blasting vibration in a railway tunnel[J]. Explosion And Shock Waves, 2022, 42(8): 085201. doi: 10.11883/bzycj-2021-0324
Citation: SHAN Renliang, ZHAO Yan, WANG Hailong, DONG Jie, TONG Xiao, LI Zhaolong, WANG Dongsheng. Attenuation of blasting vibration in a railway tunnel[J]. Explosion And Shock Waves, 2022, 42(8): 085201. doi: 10.11883/bzycj-2021-0324

下穿铁路隧道爆破振动衰减规律研究

doi: 10.11883/bzycj-2021-0324
基金项目: 国家自然科学基金(51878242);河北省自然科学基金(E2020404007)
详细信息
    作者简介:

    单仁亮(1964- ),男,博士,教授,博士生导师,srl@cumtb.edu.cn

    通讯作者:

    赵 岩(1991- ),男,博士研究生,zhaoyanlyp@163.com

  • 中图分类号: O389;TU751.9

Attenuation of blasting vibration in a railway tunnel

  • 摘要: 基于Heelan短柱药包理论,引入等效作用半径的概念,得到内部瞬时激励荷载作用下爆破峰值振动速度的衰减模型方程,并通过量纲分析进行验证。结合下穿隧道爆破工程,研究不同雷管段位及不同炮孔类型对应的爆破峰值振动速度的衰减规律。此外,讨论球形装药、柱状装药条件下改进公式的药量形式表达式,结果显示,利用等效作用半径作为拟合参考变量可以综合考虑不同雷管段位及不同炮孔类型对爆破振动规律的影响。统计数据表明,利用改进公式得到的拟合效果最优,可以为类似隧道爆破振动研究提供参考。
  • 图  1  短柱瞬时荷载作用

    Figure  1.  The instantaneous load action of a short column

    图  2  掏槽孔等效作用边界

    Figure  2.  The equivalent boundary of cutting hole blasting

    图  3  等效边界[23]

    Figure  3.  The equivalent elastic boundary[23]

    图  4  下穿隧道平面地形图

    Figure  4.  Topographic map of the underpass section of the tunnel

    图  5  隧道炮孔布置

    Figure  5.  The layout of the tunnel blast holes

    图  6  爆破振动测点布置

    Figure  6.  Layout of the blasting vibration measurement points

    图  7  典型的爆破振动速度波形

    Figure  7.  Typical blasting vibration velocity waveforms

    图  8  爆破峰值振动速度采用式(21)的拟合曲线

    Figure  8.  Fitting curves of equation (21) for the blasting peak vibration velocity

    图  9  爆破峰值振动速度采用式(28)的拟合曲线

    Figure  9.  Fitting curves of equation (28) for the blasting peak vibration velocity

    图  10  爆破峰值振动速度采用式(29)的拟合曲线

    Figure  10.  Fitting curves of equation (29) for the blasting peak vibration velocity

    表  1  爆破峰值振动速度的经验公式[14]

    Table  1.   Prediction formulas of blasting peak vibration velocity[14]

    模型公式
    Sadov’s formulavmax=k(Q1/3/R)α
    USBMvmax=k(Q1/2/R)α
    Indian Institute of Standardsvmax=k(Q/R2/3)α
    Langefors, et alvmax=k(Q/R2/3)α/2
    Ghosh, et alvmax=k(Q1/3/R)αeβR
    Royvmax=kQ1/2/R+n
    Gupta, et alvmax=k(Q/R3/2)α/2eβR
    下载: 导出CSV

    表  2  隧道爆破装药情况

    Table  2.   Charges for tunnel blasting

    炮孔类型炮孔深度/m雷管段位炮孔数量单孔装药量/kg总装药量/kg
    掏槽孔4.0H1162.743.2
    辅助孔3.5H3142.433.6
    辅助孔3.5H5171.830.6
    辅助孔3.5H7251.537.5
    辅助孔3.5H9301.545.0
    周边孔2.5H11251.230.0
    底板孔2.5H1322.14.2
    合计129224.1
    下载: 导出CSV

    表  3  爆破峰值振动速度及相关参数

    Table  3.   Blasting peak vibration velocity and related parameters

    测点监测次序爆心距/m爆破峰值振动速度/(cm·s−1)
    掏槽孔 辅助孔 周边孔 底板孔
    H1 H3H5H7H9 H11 H13
    M5127.581.991.041.221.291.580.840.38
    M430.481.660.870.911.081.270.730.25
    M336.891.540.720.460.891.230.620.20
    M240.311.110.640.580.800.920.570.22
    M149.240.980.560.480.610.760.460.23
    M5220.392.33 1.201.611.681.95 1.25 0.70
    M421.542.221.031.241.651.670.990.48
    M325.262.010.971.151.502.021.140.44
    M228.281.960.880.911.161.350.850.34
    M136.481.550.890.801.121.280.690.26
    M5330.551.860.851.141.151.350.650.27
    M436.221.530.710.900.971.160.590.18
    M342.161.460.670.650.841.010.460.16
    M250.321.200.500.720.700.830.380.13
    M157.840.920.450.630.640.740.330.12
    M5425.012.020.981.191.241.450.680.30
    M431.331.620.861.181.121.320.630.27
    M338.541.490.710.930.931.090.510.18
    M241.661.300.690.860.881.020.420.15
    M147.201.200.600.750.690.870.390.14
    M5529.021.92 0.901.151.181.41 0.62 0.26
    M433.451.700.811.051.061.250.590.23
    M338.041.520.730.930.941.110.500.17
    M245.551.310.590.820.800.950.390.14
    M150.031.170.560.750.730.830.320.10
    下载: 导出CSV

    表  4  爆破峰值振动速度采用式(21)的拟合效果

    Table  4.   Fitting effects of equation (21) for the blasting peak vibration velocity

    炮孔类型雷管段位拟合方程相关系数r2
    掏槽孔H1vmax=30.205(rd/R)0.9340.942
    辅助孔H3vmax=10.755(rd/R)0.9350.844
    H5vmax=13.401(rd/R)1.0530.819
    H7vmax=11.764(rd/R)0.9980.947
    H9vmax=10.692(rd/R)0.9610.922
    周边孔H11vmax=6.876(rd/R)1.1240.940
    底板孔H13vmax=3.721(rd/R)1.3540.907
    下载: 导出CSV

    表  5  爆破峰值振动速度的拟合效果

    Table  5.   Fitting effects of the blasting peak vibration velocity

    拟合公式炮孔类型拟合方程相关系数r2
    式(21)掏槽孔vmax= 30.205(rd/R)0.9340.942
    辅助孔vmax=9.845(rd/R)0.9160.875
    周边孔vmax=6.876(rd/R)1.1240.940
    底板孔vmax=3.721(rd/R)1.3540.907
    式(28)掏槽孔vmax=10.957(Q1/3/R)0.8510.896
    辅助孔vmax=5.197(Q1/3/R)0.6940.646
    周边孔vmax=11.705(Q1/3/R)1.2340.837
    底板孔vmax=26.762(Q1/3/R)1.5340.789
    式(29)掏槽孔vmax=7.308(Q1/2/R)0.6820.788
    辅助孔vmax=3.016(Q1/2/R)0.5670.446
    周边孔vmax= 5.812(Q1/2/R)1.2340.878
    底板孔vmax=19.298(Q1/2/R)1.5340.802
    下载: 导出CSV
  • [1] 苏建遥. 小净距交叉隧道开挖爆破振动监测及控制技术研究 [D]. 河北张家口: 河北建筑工程学院, 2018.

    SU J Y. Research on monitiring and control technoligy of small clear distance cross tunnel blasting vibration [D]. Zhangjiakou, Hebei, China: Hebei University of Architecture, 2018.
    [2] 王海龙, 赵岩, 王永佳, 等. 新建京张高铁立体交叉隧道爆破振动控制研究 [J]. 铁道标准设计, 2018, 62(7): 130–134. DOI: 10.13238/j.issn.1004-2954.201710120003.

    WANG H L, ZHAO Y, WANG Y J, et al. Study on blasting vibration control of three-dimensional cross tunnel on Beijing to Zhangjiakou high-speed railway [J]. Railway Standard Design, 2018, 62(7): 130–134. DOI: 10.13238/j.issn.1004-2954.201710120003.
    [3] 杨学奇. 基于无中墙单洞法的连拱隧道设计与施工技术研究 [D]. 成都: 西南交通大学, 2019. DOI: 10.27414/d.cnki.gxnju.2019.000460.

    YANG X Q. Research on desing and construction technology of multi-arch tunnel based on the single-hole method without middle wall [D]. Chengdu, Sichuan, China: Southwest Jiaotong University, 2019. DOI: 10.27414/d.cnki.gxnju.2019.000460.
    [4] HUANG D, CUI S, LI X Q. Wavelet packet analysis of blasting vibration signal of mountain tunnel [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 72–80. DOI: 10.1016/j.soildyn.2018.11.025.
    [5] 单仁亮, 宋永威, 白瑶, 等. 基于小波包变换的爆破信号能量衰减特征研究 [J]. 矿业科学学报, 2018, 3(2): 119–128. DOI: 10.19606/j.cnki.jmst.2018.02.003.

    SHAN R L, SONG Y W, BAI Y, et al. Research on the energy attenuation characteristics of blasting vibration signals based on wavelet packet transformation [J]. Journal of Mining Science and Technology, 2018, 3(2): 119–128. DOI: 10.19606/j.cnki.jmst.2018.02.003.
    [6] 何理, 钟东望, 李鹏, 等. 下穿隧道爆破荷载激励下边坡振动预测及能量分析 [J]. 爆炸与冲击, 2020, 40(7): 075201. DOI: 10.11883/bzycj-2019-0255.

    HE L, ZHONG D W, LI P, et al. Vibration prediction and energy analysis of slope under blasting load in underpass tunnel [J]. Explosion and Shock Waves, 2020, 40(7): 075201. DOI: 10.11883/bzycj-2019-0255.
    [7] 王海龙, 赵岩, 王海军, 等. 基于CEEMDAN-小波包分析的隧道爆破信号去噪方法 [J]. 爆炸与冲击, 2021, 41(5): 055202–137. DOI: 10.11883/bzycj-2020-0123.

    WANG H L, ZHAO Y, WANG H J, et al. De-noising method of tunnel blasting signal based on CEEMDAN decomposition-wavelet packet analysis [J]. Explosion and Shock Waves, 2021, 41(5): 055202–137. DOI: 10.11883/bzycj-2020-0123.
    [8] YU C, YUE H Z, LI H B, et al. Scale model test study of influence of joints on blasting vibration attenuation [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(1): 533–550. DOI: 10.1007/s10064-020-01944-2.
    [9] 朱正国, 孙明路, 朱永全, 等. 超小净距隧道爆破振动现场监测及动力响应分析研究 [J]. 岩土力学, 2012, 33(12): 3747–3752, 3759. DOI: 10.16285/j.rsm.2012.12.037.

    ZHU Z G, SUN M L, ZHU Y Q, et al. Field monitoring on blasting vibration and dynamic response of ultra-small spacing tunnels [J]. Rock and Soil Mechanics, 2012, 33(12): 3747–3752, 3759. DOI: 10.16285/j.rsm.2012.12.037.
    [10] QIN Q H, ZHANG J. Vibration control of blasting excavation of large cross-section highway tunnel over metro line [J]. Arabian Journal of Geosciences, 2020, 13(17): 868. DOI: 10.1007/s12517-020-05836-3.
    [11] JIANG N, ZHU B, HE X, et al. Safety assessment of buried pressurized gas pipelines subject to blasting vibrations induced by metro foundation pit excavation [J]. Tunnelling and Underground Space Technology, 2020, 102: 103448. DOI: 10.1016/j.tust.2020.103448.
    [12] LU W B, LENG Z D, HU H R, et al. Experimental and numerical investigation of the effect of blast-generated free surfaces on blasting vibration [J]. European Journal of Environmental and Civil Engineering, 2018, 22(11): 1374–1398. DOI: 10.1080/19648189.2016.1262285.
    [13] 刘彦涛. 下穿寺庙隧道爆破振动影响的数值模拟与分析 [J]. 西安建筑科技大学学报(自然科学版), 2021, 53(2): 160–166. DOI: 10.15986/j.1006-7930.2021.02.002.

    LIU Y T. Numerical simulation and analysis of the influence of blasting vibration in the tunnel crossing under a temple [J]. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2021, 53(2): 160–166. DOI: 10.15986/j.1006-7930.2021.02.002.
    [14] ONGEN T, KARAKUS D, KONAK G, et al. Assessment of blast-induced vibration using various estimation models [J]. Journal of African Earth Sciences, 2018, 145: 267–273. DOI: 10.1016/j.jafrearsci.2018.05.004.
    [15] ZHAO Y, SHAN R L, WANG H L. Research on vibration effect of tunnel blasting based on an improved Hilbert-Huang transform [J]. Environmental Earth Sciences, 2021, 80(5): 206. DOI: 10.1007/s12665-021-09506-9.
    [16] PENG Y X, LIU G J, WU L, et al. Comparative study on tunnel blast-induced vibration for the underground cavern group [J]. Environmental Earth Sciences, 2021, 80(2): 68. DOI: 10.1007/s12665-020-09362-z.
    [17] JAYASINGHE B, ZHAO Z Y, CHEE A G T, et al. Attenuation of rock blasting induced ground vibration in rock-soil interface [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 770–778. DOI: 10.1016/j.jrmge.2018.12.009.
    [18] HUSTRULID W A. Blasting principles for open pit mining: general design concept [M]. Rotterdam, the Netherlands: Balkema Publishers, 1999.
    [19] 高启栋, 卢文波, 杨招伟, 等. 垂直孔爆破诱发地震波的成分构成及演化规律 [J]. 岩石力学与工程学报, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.

    GAO Q D, LU W B, YANG Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 18–27. DOI: 10.13722/j.cnki.jrme.2018.0824.
    [20] YANG J H, CAI J Y, YAO C, et al. Comparative study of tunnel blast-induced vibration on tunnel surfaces and inside surrounding rock [J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4747–4761. DOI: 10.1007/s00603-019-01875-9.
    [21] 卢文波, HUSTRULID W. 质点峰值振动速度衰减公式的改进 [J]. 工程爆破, 2002, 8(3): 1–4. DOI: 10.3969/j.issn.1006-7051.2002.03.001.

    LU W B, HUSTRULID W. An improvement to the equation for the attenuation of the peak particle velocity [J]. Engineering Blasting, 2002, 8(3): 1–4. DOI: 10.3969/j.issn.1006-7051.2002.03.001.
    [22] DENG X H, WANG J Y, WANG R, et al. Influence of blasting vibrations generated by tunnel construction on an existing road [J]. International Journal of Civil Engineering, 2020, 18(12): 1381–1393. DOI: 10.1007/s40999-020-00549-w.
    [23] 杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.

    YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.
    [24] 王海龙, 赵岩, 王永佳, 等. 草帽山隧道爆破振动监测与分析 [J]. 铁道建筑, 2017, 57(12): 67–70. DOI: 10.3969/j.issn.1003-1995.2017.12.18.

    WANG H L, ZHAO Y, WANG Y J, et al. Blasting vibration monitoring and analysis of Caomaoshan tunnel [J]. Railway Engineering, 2017, 57(12): 67–70. DOI: 10.3969/j.issn.1003-1995.2017.12.18.
    [25] 刘达, 卢文波, 陈明, 等. 隧洞钻爆开挖爆破振动主频衰减公式研究 [J]. 岩石力学与工程学报, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.

    LIU D, LU W B, CHEN M, et al. Attenuation formula of the dominant frequency of blasting vibration during tunnel excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.
    [26] HASANIPANAH M, NADERI R, KASHIR J, et al. Prediction of blast-produced ground vibration using particle swarm optimization [J]. Engineering with Computers, 2017, 33(2): 173–179. DOI: 10.1007/s00366-016-0462-1.
    [27] GOU Y G, SHI X Z, ZHOU J, et al. Attenuation assessment of blast-induced vibrations derived from an underground mine [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104220. DOI: 10.1016/j.ijrmms.2020.104220.
    [28] MATIDZA M I, ZHANG J H, GANG H, et al. Assessment of blast-induced ground vibration at Jinduicheng molybdenum open pit mine [J]. Natural Resources Research, 2020, 29(2): 831–841. DOI: 10.1007/s11053-020-09623-5.
    [29] ZHAO Y, SHAN R L, WANG H L, et al. Regression analysis of the blasting vibration effect in cross tunnels [J]. Arabian Journal of Geosciences, 2021, 14(18): 1925. DOI: 10.1007/s12517-021-08257-y.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  834
  • HTML全文浏览量:  125
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-09-16
  • 网络出版日期:  2022-07-18
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回