地面和埋置爆炸土中地冲击作用分区数值模拟及试验研究

刘琦 翟超辰 张跃飞 曲建波 吴祥云

刘琦, 翟超辰, 张跃飞, 曲建波, 吴祥云. 地面和埋置爆炸土中地冲击作用分区数值模拟及试验研究[J]. 爆炸与冲击, 2022, 42(8): 082201. doi: 10.11883/bzycj-2021-0326
引用本文: 刘琦, 翟超辰, 张跃飞, 曲建波, 吴祥云. 地面和埋置爆炸土中地冲击作用分区数值模拟及试验研究[J]. 爆炸与冲击, 2022, 42(8): 082201. doi: 10.11883/bzycj-2021-0326
LIU Qi, ZHAI Chaochen, ZHANG Yuefei, QU Jianbo, WU Xiangyun. Numerical simulation and test study on ground shock subzones in soil produced by ground and buried explosion[J]. Explosion And Shock Waves, 2022, 42(8): 082201. doi: 10.11883/bzycj-2021-0326
Citation: LIU Qi, ZHAI Chaochen, ZHANG Yuefei, QU Jianbo, WU Xiangyun. Numerical simulation and test study on ground shock subzones in soil produced by ground and buried explosion[J]. Explosion And Shock Waves, 2022, 42(8): 082201. doi: 10.11883/bzycj-2021-0326

地面和埋置爆炸土中地冲击作用分区数值模拟及试验研究

doi: 10.11883/bzycj-2021-0326
基金项目: 湖南省研究生科研创新项目(CX20190495,CX20200648)
详细信息
    作者简介:

    刘 琦(1993- ),男,博士研究生,hhxylq@126.com

    通讯作者:

    吴祥云(1964- ),男,博士,研究员,13503882599@139.com

  • 中图分类号: O383

Numerical simulation and test study on ground shock subzones in soil produced by ground and buried explosion

  • 摘要: 为研究爆炸条件下土中应力波的时空分布,基于黄土中接触爆炸和半埋爆炸试验,验证了ANSYS/AUTODYN软件建立的计算模型,并在此基础上开展了土中爆炸地冲击效应研究。结果表明:随着土介质深度的增加,感生地冲击峰值减小,而直接地冲击峰值增大,最终,压力和竖向应力时程曲线中的2个峰值减少为1个峰值,据此特征可将土中应力波场分为3个区域,即地表区、近地表区和中心区;当装药比例埋深为−0.05~0.075 m/kg1/3时,随着装药比例埋深的增大,中心区迅速扩大,地表区迅速缩小,近地表区逐渐扩大;当装药比例埋深为0.1~0.4 m/kg1/3时,地冲击作用区的分布趋于稳定;爆炸耦合进入空气和土介质中的动能受炸药类型影响,但在一定范围内,地冲击作用区角度与地面空气冲击波超压冲量和直接地冲击应力冲量之比呈线性相关关系。
  • 图  1  波阵面的连续位置[9]

    Figure  1.  Successive locations of wave fronts[9]

    图  2  爆炸模型

    Figure  2.  The explosion model

    图  3  有限元模型和边界条件

    Figure  3.  The finite element model and boundary conditions

    图  4  工况B1~B10下炸药附近区域的放大

    Figure  4.  Enlarged details near TNT under conditions B1−B10

    图  5  数值网格

    Figure  5.  Numerical mesh

    图  6  测试布置

    Figure  6.  Test arrangements

    图  7  试验中的测量仪器

    Figure  7.  Measuring instrumentation used in test

    图  8  试验前现场布置

    Figure  8.  Site layout before the test

    图  9  试验后破坏情况

    Figure  9.  Damages after the tests

    图  10  地面空气冲击波超压和土中直接地冲击竖向应力时程曲线试验结果

    Figure  10.  Tested time history curves of air-blast overpressure and vertical stress of direct ground shock

    图  11  地面空气冲击波超压和土中直接地冲击竖向应力时程曲线数值模拟结果

    Figure  11.  Numerically-simulated time history curves of air-blast overpressure and vertical stress of direct ground shock

    图  12  试验与数值模拟数据对比

    Figure  12.  Comparison of tests and simulations

    图  13  工况B3下的压力云图

    Figure  13.  Pressure contours under condition B3

    图  14  工况B3下爆心水平距离0.5 m处的压力时程曲线

    Figure  14.  Pressure-time curves at the horizontal distance of 0.5 m from the detonation point under condition B3

    图  15  工况B3下爆心水平距离0.5 m处竖向应力时程曲线

    Figure  15.  Vertical stress time curves at the horizontal distance of 0.5 m from the detonation point under condition B3

    图  16  工况B1~B10下1.0 ms时的压力云图

    Figure  16.  Pressure contours at 1.0 ms under conditions B1−B10

    图  17  工况B3下的能量时程曲线

    Figure  17.  Energy time history curves under condition B3

    图  18  工况B1~B10下空气和黄土的动能峰值随装药比例埋深的变化

    Figure  18.  Peak kinetic energy of air and loess varying with charge scaled depth of burial under conditions B1−B10

    图  19  αβγ的取值方法

    Figure  19.  Determination methods of α, β and γ

    图  20  工况B1~B10下地冲击作用区的角度随装药比例埋深的变化

    Figure  20.  Angles of ground shock subzones varying with charge scaled depth of burial under conditions B1−B10

    图  21  工况C1~C12下1.0 ms时的压力云图

    Figure  21.  Pressure contours at 1.0 ms under conditions C1−C12

    图  22  工况C1~C12下空气和黄土的动能峰值

    Figure  22.  Peak kinetic energy of air and loess under conditions C1−C12

    图  23  Ia/Is随炸药爆速和爆压的变化

    Figure  23.  Variation of Ia/Is with detonation velocity and detonation pressure of explosive

    图  24  αβγIa/Is的变化

    Figure  24.  Variation of α, β and γ with Ia/Is

    表  1  计算工况

    Table  1.   Calculation conditions

    工况炸药类型装药量/kg装药比例埋深/(m·kg−1/3)装药半径/mm装药高度/mm
    B1TNT1−0.0544.2100
    B2TNT1−0.02544.2100
    B3TNT1044.2100
    B4TNT10.02544.2100
    B5TNT10.0544.2100
    B6TNT10.07544.2100
    B7TNT10.144.2100
    B8TNT10.244.2100
    B9TNT10.344.2100
    B10TNT10.444.2100
    C1ANFO1.380061.8123.6
    C2C40.655040.280.4
    C3EXPLOS.D0.968047.795.4
    C4HMX0.663038.276.4
    C5HNS 1.650.815042.885.6
    C6NM0.814048.697.2
    C7PBX94070.685040.881.6
    C8PBX95020.987043.687.2
    C9PETN 1.770.645038.777.4
    C10SEISMOPLAS0.835043.787.4
    C11TETRYL0.777041.583.0
    C12TNT1046.092.0
    下载: 导出CSV

    表  2  炸药参数[23]

    Table  2.   Explosive parameters[23]

    工况炸药类型ρ0/(g·cm−3)A/GPaB/GPaR1R2ωDd/(m·s−1)pd/GPaE0/(GJ·m−3)
    C1ANFO0.93149.461.8913.9071.1180.33341605.152.484
    C2C41.601609.7712.954.51.40.258193289.0
    C3EXPLOS.D1.42300.73.944.31.20.356500165.4
    C4HMX1.891778.287.07144.21.00.3091104210.5
    C5HNS 1.651.65463.18.8734.551.350.35703021.57.45
    C6NM1.128209.255.6894.41.20.30628012.55.1
    C7PBX94071.60573.214.644.61.40.32791026.58.6
    C8PBX95021.895460.39.5444.01.70.48771030.27.07
    C9PETN 1.771.77617.0516.9264.41.20.25830033.510.1
    C10SEISMOPLAS1.588620.6023.275.3991.6510.282720020.57.0
    C11TETRYL1.73586.8310.6714.41.20.275791028.58.2
    C12TNT1.63373.773.74714.150.90.35693021.06.0
    B1~B10TNT1.63373.773.74714.150.90.35693021.06.0
    下载: 导出CSV

    表  3  SAND模型参数[32-33]

    Table  3.   Parameters of the SAND model[32-33]

    冲击压实方程(参考密度ρ=2.641 g/cm3颗粒强度模型
    压力/MPa密度1/(g·cm−3)声速/(km·s−1)密度2/(g·cm−3)压力/MPa强度/MPa密度/(g·cm−3)剪切模量/GPa
    01.674 0.26521.674 0 01.6740.077
    4.5771.739 0.85211.745 3.40 4.231.7460.869
    14.981.8741.7222.086 3.49 44.72.0864.03
    29.151.9971.8752.1471011242.1474.91
    59.172.1442.2652.3001852262.3007.77
    98.092.2502.9562.5725002262.57214.8
    179.4 2.3803.1122.5982.59816.6
    289.4 2.4854.6002.635静水拉力极限
    pmin= −1.00 kPa
    2.63536.7
    450.2 2.5854.6342.6412.64137.3
    650.7 2.6704.6342.800 2.80037.3
    注:(1)利用压力与密度1的分段线性函数来描述砂土的塑性压实过程;(2)利用声速与密度2的分段线性函数来描述砂土的弹性加载和卸载过程。
    下载: 导出CSV

    表  4  线性压实状态方程中压力与密度1的关系(基于式(3))

    Table  4.   Relationship between pressure and density 1 in the compaction linear equation of state (based on formula (3))

    密度1/(g·cm−3)体应变$ {\varepsilon _i}{\text{ = }}1{{ - {\rho _i}} \mathord{\left/ {\vphantom {{ - {\rho _i}} {{\rho _{i + 1}}}}} \right. } {{\rho _{i + 1}}}} $累积体应变$\varepsilon $修正后压力/MPa
    1.674000
    1.7390.037380.037381.750
    1.8740.072040.109426.844
    1.9970.061590.1710121.96
    2.1440.068560.2395780.42
    2.2500.047110.28668196.2
    2.3800.054620.34131551.8
    2.4850.042250.383561227.8
    2.5850.038680.422242553.6
    2.6700.031840.454084665.3
    下载: 导出CSV

    表  5  试验工况

    Table  5.   Test conditions

    工况装药量/kg装药比例埋深/(m·kg−1/3)地面空气冲击波超压测点土中直接地冲击竖向应力测点
    E11−0.05A1~A4S1~S4
    E21 0.00
    下载: 导出CSV

    表  6  试验与数值模拟荷载峰值

    Table  6.   Peak loads obtained by tests and simulations

    工况测点荷载峰值工况测点荷载峰值
    模拟值/kPa试验值/kPa偏差/%模拟值/kPa试验值/kPa偏差/%
    E1(B1)A15650639411.6 E2(B3)A13678409210.1
    A22943347015.2A21731216720.1
    E1(B1)A31640183210.5 E2(B3)A3920118022.0
    A41008123118.1A453368622.3
    S164957512.9S1107910413.7
    S219327930.8S2300
    S3928212.2S31181143.5
    S455S466
    下载: 导出CSV

    表  7  工况C1~C12下的数值模拟结果

    Table  7.   Numerically simulated results under conditions C1−C12

    工况炸药类型α/(°)β/(°)γ/(°)p0.5/kPaσ0.5/kPaIa/(kPa·ms)Is/(kPa·ms)Ia/Is
    C1ANFO23.126.9959.892835.501636.93137.31282336.6910.05876
    C2C442.180.4347.393733.34893.77159.38081138.6260.13998
    C3EXPLOS.D30.674.3255.013451.481164.38147.58051575.0460.09370
    C4HMX44.510.0045.494125.33849.82161.84971077.6470.15019
    C5HNS1.6536.011.9452.053794.171043.78153.70761364.5790.11264
    C6NM34.751.7553.503535.131121.93154.80511491.9940.10376
    C7PBX940742.090.0047.913990.68894.76162.58251153.0900.14100
    C8PBX950232.663.1054.243932.761064.81150.59891415.3790.10640
    C9PETN1.7745.350.0044.653907.44843.95162.00051058.8380.15300
    C10SEISMOPLAS34.593.3652.053592.10983.94150.92181301.7070.11594
    C11TETRYL38.581.4549.973758.19963.50152.33021240.6910.12278
    C12TNT32.903.6053.503562.001133.18146.15411515.7830.09642
    下载: 导出CSV
  • [1] WU C, LU Y, HAO H, et al. Characterisation of underground blast-induced ground motions from large-scale field tests [J]. Shock Waves, 2003, 13(3): 237–252. DOI: 10.1007/s00193-003-0212-3.
    [2] 何翔, 吴祥云, 李永池, 等. 石灰岩中爆炸成坑和地冲击传播规律的试验研究 [J]. 岩石力学与工程学报, 2004, 23(5): 725–729. DOI: 10.3321/j.issn:1000-6915.2004.05.004.

    HE X, WU X Y, LI Y C, et al. Testing study on crater formed by explosion and propagation laws of ground shock in limestone [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 725–729. DOI: 10.3321/j.issn:1000-6915.2004.05.004.
    [3] LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock [J]. International Journal of Impact Engineering, 2007, 34(9): 1487–1499. DOI: 10.1016/j.ijimpeng.2006.10.009.
    [4] 吴祥云, 刘国军, 杨仁华, 等. 常规装药爆炸埋深对自由场直接地冲击参数的影响 [J]. 防护工程, 2009, 31(5): 26–30.

    WU X Y, LIU G J, YANG R H, et al. The influence of buried depth of conventional charge on free field direct ground shock parameters [J]. Protective Engineering, 2009, 31(5): 26–30.
    [5] 叶亚齐, 任辉启, 李永池, 等. 砂质黏土中不同深度爆炸自由场地冲击参数预计方法研究 [J]. 岩石力学与工程学报, 2011, 30(9): 1918–1923. DOI: CNKI:SUN:YSLX.0.2011-09-024.

    YE Y Q, REN H Q, LI Y C, et al. Study of prediction of ground shock parameters in free field at different depths of burst in sandy clay [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1918–1923. DOI: CNKI:SUN:YSLX.0.2011-09-024.
    [6] YANKELEVSKY D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave’s peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864–881. DOI: 10.1016/j.ijimpeng.2011.05.011.
    [7] JAYASINGHE L B, THAMBIRATNAM D P, PERERA N, et al. Blast induced ground shock effects on pile foundations [J]. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 2013, 7(4): 176–180. DOI: 10.5281/zenodo.1073675.
    [8] SONG J, LI S C. Study on numerical simulation of explosion in soil based on fluid-solid coupling arithmetic [J]. Applied Mechanics and Materials, 2014, 580-583: 2916–2919. DOI: 10.4028/www.scientific.net/AMM.580-583.2916.
    [9] ALEKSEYENKO V D, GRIGORYAN S S, KOSHELEV L I, et al. Measurement of stress waves in soft soil [R]. Hanover, NH, USA: U. S. Army Cold Regions Research and Engineering Laboratory, 1970: 12–19.
    [10] BESHARA F B A. Modelling of blast loading on aboveground structures: Ⅱ. internal blast and ground shock [J]. Computers & Structures, 1994, 51(5): 597–606. DOI: 10.1016/0045-7949(94)90067-1.
    [11] WU C Q, HAO H. Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions [J]. International Journal of Impact Engineering, 2005, 31(6): 699–717. DOI: 10.1016/j.ijimpeng.2004.03.002.
    [12] WU C Q, HAO H. Numerical simulation of structural response and damage to simultaneous ground shock and airblast loads [J]. International Journal of Impact Engineering, 2007, 34(3): 556–572. DOI: 10.1016/j.ijimpeng.2005.11.003.
    [13] 范俊余, 方秦, 柳锦春. 炸药地面爆炸条件下土中浅埋结构上荷载的作用特点 [J]. 解放军理工大学学报(自然科学版), 2008, 9(6): 676–680. DOI: 10.3969/j.issn.1009-3443.2008.06.026.

    FAN J Y, FANG Q, LIU J C. Characteristics of loads on shallow-buried structures under the ground explosions [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2008, 9(6): 676–680. DOI: 10.3969/j.issn.1009-3443.2008.06.026.
    [14] 柳锦春, 方秦, 还毅, 等. 炸药地面接触爆炸下土中感生地冲击的实用计算方法 [J]. 解放军理工大学学报(自然科学版), 2010, 11(2): 121–124. DOI: 10.3969/j.issn.1009-3443.2010.02.005.

    LIU J C, FANG Q, HUAN Y, et al. Practicable calculating method of indirect ground shock in soil at surface contact explosion [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 121–124. DOI: 10.3969/j.issn.1009-3443.2010.02.005.
    [15] 杨仁华, 张新乐, 吴祥云, 等. 间接地冲击在黄土中衰减规律的试验研究 [J]. 防护工程, 2010, 32(5): 6–9.

    YANG R H, ZHANG X L, WU X Y, et al. Experimental research on attenuation laws of airblast-induced ground shock in loess [J]. Protective Engineering, 2010, 32(5): 6–9.
    [16] 吴祥云, 曲建波, 李宝宝, 等. 岩石中装药埋深对地表空气冲击波超压的影响 [J]. 防护工程, 2013, 35(4): 23–26.

    WU X Y, QU J B, LI B B, et al. The influence of buried depth of a conventional charge on the direct ground shock parameters [J]. Protective Engineering, 2013, 35(4): 23–26.
    [17] KRAUTHAMMER T, BAZEOS N, HOLMQUIST T J. Modified SDOF analysis of RC box-type structures [J]. Journal of Structural Engineering, 1986, 112(4): 726–744. DOI: 10.1061/(ASCE)0733-9445(1986)112:4(726).
    [18] KRAUTHAMMER T, ASTARLIOGLU S. Direct shear resistance models for simulating buried RC roof slabs under airblast-induced ground shock [J]. Engineering Structures, 2017, 140: 308–316. DOI: 10.1016/j.engstruct.2017.02.056.
    [19] CHEE K H. Analysis of shallow buried reinforced concrete box structures subjected to airblast loads [D]. Gainesville, Florida, USA: University of Florida, 2008: 19–53.
    [20] 荣吉利, 宋逸博, 王玺, 等. 核爆炸对地冲击作用下土体运动特性等效模拟 [J]. 兵工学报, 2021, 42(1): 56–64. DOI: 10.3969/j.issn.1000-1093.2021.01.006.

    RONG J L, SONG Y B, WANG X, et al. Equivalent simulation of soil motion characteristics under the action of ground shock induced by nuclear explosion [J]. Acta Armamentarii, 2021, 42(1): 56–64. DOI: 10.3969/j.issn.1000-1093.2021.01.006.
    [21] 刘峥, 程怡豪, 邱艳宇, 等. 成层式防护结构抗超高速侵彻的数值分析 [J]. 爆炸与冲击, 2018, 38(6): 1317–1324. DOI: 10.11883/bzycj-2017-0181.

    LIU Z, CHENG Y H, QIU Y Y, et al. Numerical analysis on hypervelocity penetration into layered protective structure [J]. Explosion and Shock Waves, 2018, 38(6): 1317–1324. DOI: 10.11883/bzycj-2017-0181.
    [22] 陈材, 石全, 尤志锋, 等. 圆柱形弹药空气中爆炸相似性规律 [J]. 爆炸与冲击, 2019, 39(9): 092202. DOI: 10.11883/bzycj-2018-0255.

    CHEN C, SHI Q, YOU Z F, et al. Similarity law of cylindrical ammunition explosions in air [J]. Explosion and Shock Waves, 2019, 39(9): 092202. DOI: 10.11883/bzycj-2018-0255.
    [23] Century Dynamics Inc. Ansys/Autodyn Version 11.0, User Documentation [Z]. Pennsylvania, USA: Century Dynamics Inc, 2007: 89–112.
    [24] LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. The Physics Fluids, 1980, 23(12): 2362. DOI: 10.1063/1.862940.
    [25] LUCCIONI B, AMBROSINI D, NURICK G, et al. Craters produced by underground explosions [J]. Computers & Structures, 2009, 87(21/22): 1366–1373. DOI: 10.1016/j.compstruc.2009.06.002.
    [26] FISEROVA D. Numerical analysis of buried mine explosions with emphasis on effect of soil properties on loading [D]. Cranfield, England: Cranfield University, 2006: 37–51.
    [27] LAINE L, SANDVIK A. Derivation of mechanical properties for sand [C]//Proceedings of the 4th Asia-Pacific Conference on Shock and Impact Loads on Structures. Singapore: CI-Premier PTE LTD, 2001: 361–368.
    [28] LAINE L. Study of planar ground shock in different soils and its propagation around a rigid block [C]//Proceedings of the 77th Shock and Vibration Symposium. Monterey, CA, USA: Shock and Vibration Information Analysis Center, 2006: 1–10.
    [29] LAINE L, LARSEN O P. Proposal on how to model the unloading in a compaction equation of state based upon tri-axial tests on dry sand [C]//Proceedings of the 80th Shock and Vibration Symposium. San Diego, USA: Shock and Vibration Information Analysis Center, 2009: 1–14.
    [30] LAINE L, LARSEN O P. Implementation of equation of state for dry sand in Autodyn [C]//Proceedings of the 83rd Shock and Vibration Symposium. New Orleans, USA: Shock and Vibration Exchange, 2012: 1–15.
    [31] 肖诗云, 林皋, 王哲. Drucker-Prager材料一致率型本构模型 [J]. 工程力学, 2003, 20(4): 147–151. DOI: 10.3969/j.issn.1000-4750.2003.04.026.

    XIAO S Y, LIN G, WANG Z. A Drucker-Prager consistent rate-dependent model [J]. Engineering Mechanics, 2003, 20(4): 147–151. DOI: 10.3969/j.issn.1000-4750.2003.04.026.
    [32] 张坤, 郑全平, 李四伟, 等. 土中爆炸对埋地管线冲击作用的数值模拟分析 [J]. 后勤工程学院学报, 2013, 29(3): 12–17; 23. DOI: 10.3969/j.issn.1672-7843.2013.03.003.

    ZHANG K, ZHENG Q P, LI S W, et al. Numerical simulation and analysis for impact of explosion under ground on buried pipelines [J]. Journal of Logistical Engineering University, 2013, 29(3): 12–17; 23. DOI: 10.3969/j.issn.1672-7843.2013.03.003.
    [33] 金辉, 张庆明, 高春生, 等. 装药水下沉底爆炸压力场特性研究 [J]. 科技导报, 2009, 27(14): 32–37. DOI: 10.3321/j.issn:1000-7857.2009.14.007.

    JIN H, ZHANG Q M, GAO C S, et al. Characteristics of pressure field in ground explosion [J]. Science & Technology Review, 2009, 27(14): 32–37. DOI: 10.3321/j.issn:1000-7857.2009.14.007.
    [34] 扶涛涛. 黄土湿陷和塌陷机理研究 [J]. 河南科技, 2018(23): 104–105. DOI: 10.3969/j.issn.1003-5168.2018.23.058.

    FU T T. Discussion on collapsibility and collapse mechanism of loess [J]. Henan Science and Technology, 2018(23): 104–105. DOI: 10.3969/j.issn.1003-5168.2018.23.058.
    [35] 王志良. 河南郑州-洛阳地区黄土湿陷机理研究 [D]. 北京: 中国地质科学院, 2013: 7–14.

    WANG Z L. The study on collapsible mechanism of loess between Zhengzhou with Luoyang of Henan region [D]. Beijing, China: Chinese Academy of Geological Sciences, 2013: 7-14.
    [36] 申永庆. 洛阳地区黄土湿陷性及其影响因素研究 [D]. 石家庄: 河北地质大学, 2015: 21–23.

    SHEN Y Q. Research on the collapsibility and influential factors of loess in Luoyang [D]. Shijiazhuang, Hebei, China: Hebei GEO University, 2015: 21–23.
    [37] 顾文彬, 叶序双, 詹发民, 等. 球形装药半无限土介质中爆炸动力学分析 [J]. 工程爆破, 1999, 5(1): 5–10. DOI: 10.3969/j.issn.1006-7051.1999.01.002.

    GU W B, YE X S, ZHAN F M, et al. Dynamic analysis on spherical charges exploding in semi-infinite soil medium [J]. Engineering Blasting, 1999, 5(1): 5–10. DOI: 10.3969/j.issn.1006-7051.1999.01.002.
    [38] 陈亚娟, 王利. 土介质中TNT炸药爆炸波传播特性的数值模拟 [J]. 河南理工大学学报(自然科学版), 2010, 29(1): 88–91. DOI: 10.3969/j.issn.1673-9787.2010.01.018.

    CHEN Y J, WANG L. Numerical study on the propagation and damage behavior of the blasting wave with TNT in soil medium [J]. Journal of Henan Polytechnic University (Natural Science), 2010, 29(1): 88–91. DOI: 10.3969/j.issn.1673-9787.2010.01.018.
  • 加载中
图(24) / 表(7)
计量
  • 文章访问数:  686
  • HTML全文浏览量:  218
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2022-02-21
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回