泄爆面积对甲烷-空气预混泄爆容器结构响应影响的实验研究

王金贵 胡超 罗飞云 张苏

王金贵, 胡超, 罗飞云, 张苏. 泄爆面积对甲烷-空气预混泄爆容器结构响应影响的实验研究[J]. 爆炸与冲击, 2022, 42(4): 045102. doi: 10.11883/bzycj-2021-0327
引用本文: 王金贵, 胡超, 罗飞云, 张苏. 泄爆面积对甲烷-空气预混泄爆容器结构响应影响的实验研究[J]. 爆炸与冲击, 2022, 42(4): 045102. doi: 10.11883/bzycj-2021-0327
WANG Jingui, HU Chao, LUO Feiyun, ZHANG Su. Experimental study on the effects of venting area on the structural response of vessel walls to methane-air mixture deflagration[J]. Explosion And Shock Waves, 2022, 42(4): 045102. doi: 10.11883/bzycj-2021-0327
Citation: WANG Jingui, HU Chao, LUO Feiyun, ZHANG Su. Experimental study on the effects of venting area on the structural response of vessel walls to methane-air mixture deflagration[J]. Explosion And Shock Waves, 2022, 42(4): 045102. doi: 10.11883/bzycj-2021-0327

泄爆面积对甲烷-空气预混泄爆容器结构响应影响的实验研究

doi: 10.11883/bzycj-2021-0327
基金项目: 福建省自然科学基金(2020J01505)
详细信息
    作者简介:

    王金贵(1987- ),男,博士,副教授,wjgfzu@126.com

    通讯作者:

    张 苏(1987- ),女,博士,副教授,zhangsu88@126.com

  • 中图分类号: 13035

Experimental study on the effects of venting area on the structural response of vessel walls to methane-air mixture deflagration

  • 摘要: 利用自主搭建的泄爆容器结构响应测试系统,开展了不同泄爆面积条件下甲烷-空气预混气体泄爆实验,结合振动加速度、内部超压、火焰演化和信号频率-时间分布等探究了泄爆面积对容器结构响应的影响特征及机制。研究发现:(1)容器振动加速度曲线和内部超压曲线具有相似的变化趋势,两者均存在双峰现象,且两者一一对应,但加速度峰值出现略迟;随着无量纲泄爆系数增大,第1个内部超压和加速度峰值主体为增大趋势,而第2个内部超压和加速度峰值的变化趋势为先减小后增大再减小;(2)火焰未到达泄爆口之前,上部的火焰平均速度随着无量纲泄爆系数增大而减小,无量纲泄爆系数较小时火焰较早从泄爆口喷出;(3)在当前实验条件下,当无量纲泄爆系数为25.00时,热声耦合现象最剧烈,表现为最大幅值的振动响应和最大能量的高频振荡,而随着无量纲泄爆系数进一步增大或者减小,热声耦合现象逐渐衰减。
  • 图  1  爆炸实验舱及其示意图(AS:加速度传感器;PS:压力传感器)

    Figure  1.  Real and schematic images of the explosion experimental vessel (AS: acceleration sensor; PS: pressure sensor)

    图  2  容器振动加速度及内部超压时程曲线(KV=6.25)

    Figure  2.  Time history curves of vessel vibration and internal overpressure (KV = 6.25)

    图  3  振动时频图(KV=6.25)

    Figure  3.  Vibration time frequency diagrams (KV=6.25)

    图  4  泄爆火焰演化(KV=6.25)

    Figure  4.  Deflagration flame evolution (KV=6.25)

    图  11  振动加速度曲线(KV=33.33)

    Figure  11.  Vibration acceleration curve (KV =33.33)

    图  5  KV对外部火球形状的影响

    Figure  5.  Effect of KV on the shape of the external fireball

    图  6  p1A1p2A2KV的变化

    Figure  6.  Variation of p1 and A1, p2 and A2 with KV

    图  7  振动加速度曲线(KV=5.00)

    Figure  7.  Vibration acceleration curve (KV =5.00)

    图  8  超压时程曲线(KV=5.00)

    Figure  8.  Overpressure time history curve (KV =5.00)

    图  9  振动时频图(KV=5.00)

    Figure  9.  Time frequency diagram (KV =5.00)

    图  10  火焰演化图像(KV=5.00)

    Figure  10.  Flame evolution images (KV =5.00)

    图  12  超压时程曲线(KV=33.33)

    Figure  12.  Overpressure time history curve (KV =33.33)

    图  13  振动时频图(KV=33.33)

    Figure  13.  Time frequency diagram (KV =33.33)

    图  14  火焰演化图像(KV=33.33)

    Figure  14.  Flame evolution images (KV =33.33)

    图  15  不同KV下上部的火焰平均速度

    Figure  15.  Upper flame average speed for different KV

    图  16  振动加速度曲线(KV=12.50)

    Figure  16.  Vibration acceleration curve (KV =12.50)

    图  17  超压时程曲线(KV=12.50)

    Figure  17.  Overpressure time history curve (KV =12.50)

    图  18  振动时频图(KV=12.50)

    Figure  18.  Time frequency diagram (KV =12.50)

    图  19  火焰演化图像(KV=12.50)

    Figure  19.  Flame evolution images (KV=12.50)

    图  20  振动加速度曲线(KV=25.00)

    Figure  20.  Vibration acceleration curve (KV =25.00)

    图  21  超压时程曲线(KV=25.00)

    Figure  21.  Overpressure time history curve (KV =25.00)

    图  22  振动时频图(KV=25.00)

    Figure  22.  Time frequency diagram (KV =25.00)

    图  23  火焰演化图像(KV=25.00)

    Figure  23.  Flame evolution images (KV =25.00)

    表  1  实验工况

    Table  1.   Experimental condition

    实验泄爆口尺寸/m泄爆面积/m2KV
    1 0.5×0.40.20 5.00
    2 0.4×0.40.16 6.25
    3 0.3×0.40.12 8.33
    4 0.2×0.40.0812.50
    50.135×0.4 0.05418.52
    6 0.1×0.40.0425.00
    70.075×0.40.0333.33
    下载: 导出CSV
  • [1] 段佳, 崔东明, 董刚. 甲烷-空气预混气体泄爆过程的数值模拟与实验验证 [J]. 南京理工大学学报(自然科学版), 2006(1): 26–29. DOI: 10.14177/j.cnki.32-1397n.2006.01.007.

    DUAN J, CUI D M, DONG G. Numerical simulation and experimental verification of methane-air premixed gas venting process [J]. Journal of the Nanjing University of Science and Technology (Science Edition), 2006(1): 26–29. DOI: 10.14177/j.cnki.32-1397n.2006.01.007.
    [2] LI J D, HAO H. Numerical and analytical prediction of pressure and impulse from vented gas explosion in large cylindrical tanks [J]. Process Safety and Environmental Protection, 2019, 127: 226–244. DOI: 10.1016/j.psep.2019.05.019.
    [3] 王发辉, 孙悦, 温小萍, 等. 富氧条件下不同泄爆面积对CH4燃烧诱导快速相变的影响 [J]. 安全与环境学报, 2021, 21(1): 109–116. DOI: 10.13637/j.issn.1009-6094.2019.1238.

    WANG F H, SUI Y, WEN X P, et al. Effect of different venting areas on combustion-induced rapid phase transition of CH4 under oxygen-enriched conditions [J]. Journal of Safety and Environment, 2021, 21(1): 109–116. DOI: 10.13637/j.issn.1009-6094.2019.1238.
    [4] 董冰岩, 彭旭. 泄爆面积对柱形容器泄爆过程压力影响 [J]. 工业安全与环保, 2012, 38(12): 47–51. DOI: 10.3969/j.issn.1001-425X.2012.12.016.

    DONG B Y, PENG X. Influence of venting area on pressure of cylindrical vessel during venting process [J]. Industrial Safety and Environmental Protection, 2012, 38(12): 47–51. DOI: 10.3969/j.issn.1001-425X.2012.12.016.
    [5] LIU W, GUO J, ZHANG J Q, et al. Effect of vent area on vented deflagration of hydrogen-methane-air mixtures [J]. International Journal of Hydrogen Energy, 2021, 41(9): 6992–6999. DOI: 10.1016/J.IJHYDENE.2020.11.123.
    [6] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions [J]. Combustion and Flame, 1986, 65(1): 1–14. DOI: 10.1016/0010-2180(86)90067-2.
    [7] TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 35. DOI: 10.1016/j.jlp.2015.04.014.
    [8] 唐泽斯, 郭进, 张苏, 等. 甲烷-空气预混气体泄爆作用下容器振动响应特性 [J]. 福州大学学报(自然科学版), 2020, 48(2): 263–268.

    TANG Z S, GUO J, ZHANG S, et al. Characteristics of vessel vibration response to methane-air premixed gas venting [J]. Journal of Fuzhou University (Natural Science), 2020, 48(2): 263–268.
    [9] HUNG C F, LIN B J, HWANG FUU J J, et al. Dynamic response of cylindrical shell structures subjected to underwater explosion [J]. Ocean Engineering, 2009, 36(8). DOI: 10.1016/j.oceaneng.2009.02.001.
    [10] 王敏, 文鹤鸣. 碳纳米管/碳纤维增强复合材料层合板低速冲击响应和破坏的数值模拟 [J]. 爆炸与冲击, 2022, 42(3): 033102. DOI: 10.11883/bzycj-2021-0050.

    WANG M, WEN H M. Numerical simulation of low velocity impact response and failure of carbon nanotube/carbon fiber reinforced plastic [J]. Explosion and Shock Waves, 2022, 42(3): 033102. DOI: 10.11883/bzycj-2021-0050.
    [11] MA H Y, LONG Y, LI X H, et al. Study on vibration characteristics of natural gas pipeline explosion based on improved MP-WVD algorithm [J]. Shock and Vibration, 2018(6): 1–13. DOI: 10.1155/2018/8969675.
    [12] WANG Q, GONG J, LI Z M, et al. Vibration characteristics analysis of composite double-layer explosive vessel shell subjected to explosion loading [J]. Shock and Vibration, 2018(7): 1–10. DOI: 10.1155/2018/3714798.
    [13] PINI T, HANSSEN A, SCHIAVETTI M, et al. Small scale experiments and Fe model validation of structural response during hydrogen vented deflagrations [J]. International Journal of Hydrogen Energy, 2019, 44(17): 9063–9070. DOI: 10.1016/j.ijhydene.2018.05.052.
    [14] ATANGA G, LAKSHMIPATHY S, SKJOLD T, et al. Structural response for vented hydrogen deflagrations: coupling CFD and FE tools [J]. International Journal of Hydrogen Energy, 2019, 44(17): 8893–8903. DOI: 10.1016/j.ijhydene.2018.08.085.
    [15] WANG J G, LUO F Y, GUO J, et al. Structural response for vented methane–air deflagrations: effects of volumetric blockage ratio [J]. Journal of Loss Prevention in the Process Industries, 2020, 66: 104172. DOI: 10.1016/J.JLP.2020.104172.
    [16] WANG C H, LI J L, TANG Z S, et al. Flame propagation in methane-air mixtures with transverse concentration gradients in horizontal duct [J]. Fuel, 2020, 265(4): 116926. DOI: 10.1016/j.fuel.2019.116926.
    [17] MCCANN D P J, THOMAS G, EDWARDS D H. Gas dynamics of vented explosions: Part Ⅰ: experimental studies [J]. Combustion and Flame, 1985, 59(3): 233–250.
    [18] BAUWENS C R, CHAFFEE J, DOROFEEV S B. Effect of instabilities and acoustics on pressure generated in vented propane air explosions[C]// 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, 2009.
    [19] BAUWENS C R, DOROFEEV S B. Effect of initial turbulence on vented explosion overpressures from lean hydrogen–air deflagrations [J]. International Journal of Hydrogen Energy, 2014, 39(35): 20509. DOI: 10.1016/j.ijhydene.2014.04.118.
    [20] CHAO J, BAUWENS C R, DOROFEEV S B. An analysis of peak overpressures in vented gaseous explosions [J]. Proceedings of the Combustion Institute, 2010, 33(2): 2367–2374. DOI: 10.1016/j.proci.2010.06.144.
    [21] LIANG Z, CLOUTHIER T, MACCOY R, et al. Overview of hydrogen combustion experiments performed in a large-scale vented vessel at Canadian Nuclear Laboratories [J]. Nuclear Engineering and Design, 2018, 330: 272–281. DOI: 10.1016/j.nucengdes.2018.02.002.
    [22] SOLBERG D M, PAPPAS J A, SKRAMSTSD E. Observations of flame instabilities in large scale vented gas explosions [J]. Eighteenth Symposium (International) on Combustion, 1980, 18(1): 1607–1617. DOI: 10.1016/S0082-0784(81)80164-6.
    [23] LI H W, TANG Z S, LI J J, et al. Investigation of vented hydrogen-air deflagrations in a congested vessel [J]. Process Safety and Environment Protection, 2019, 129: 196–201. DOI: 10.1016/j.psep.2019.07.009.
    [24] DHAKAL R P, PAN T C. Response characteristics of structures subjected to blasting-induced ground motion [J]. International Journal of Impact Engineering, 2003, 28(8): 813–28. DOI: 10.1016/S0734-743X(02)00157-4.
    [25] 郝腾腾. 氢气泄爆作用下超压荷载及结构动力响应规律研究[D]. 合肥: 合肥工业大学, 2020: 40−41. DOI: 10.27101/d.cnki.ghfgu.2020.001735.
    [26] 汪兴. 细长方形容器内障碍物对氢泄爆特性影响研究[D]. 合肥: 合肥工业大学, 2019: 39−41.
    [27] RUI S C, WANG Q, CHEN F, et al. Effect of vent area on the vented methane-air deflagrations in a 1 m3 rectangular vessel with and without obstacles [J]. Journal of Loss Prevention in the Process Industries, 2021, 74(1): 104642. DOI: 10.1016/j.jlp.2021.104642.
    [28] BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane–air mixtures [J]. Fuel, 2016, 175(7): 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [29] 郝腾腾, 王昌建, 颜王吉, 等. 氢气泄爆作用下结构动力响应特性研究 [J]. 爆炸与冲击, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.

    HAO T T, WANG C J, YAN W J, et al. Study on dynamic response characteristics of structures under hydrogen venting [J]. Explosion and Shock Waves, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
    [30] BAUWENS C, CHAFFEE J, DOROFEEV S. Experimental and numerical study of methane–air deflagrations in a vented enclosure[C]// 9th International Symposium on Fire Safety Science. 2008: 1043−1054. DOI: 10.3801/IAFSS.FSS.9-1043.
    [31] VAN WINGERDEN C J M, ZEEUWEN J P. On the role of acoustically driven flame instabilities in vented gas explosions and their elimination [J]. Combustion and Flame, 1983, 51: 109–111. DOI: 10.1016/0010-2180(83)90088-3.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  201
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-10-15
  • 网络出版日期:  2022-01-07
  • 刊出日期:  2022-05-09

目录

    /

    返回文章
    返回