列车碰撞被动安全性与司乘人员冲击生物损伤研究进展

敬霖 刘凯 王成全

敬霖, 刘凯, 王成全. 列车碰撞被动安全性与司乘人员冲击生物损伤研究进展[J]. 爆炸与冲击, 2021, 41(12): 121405. doi: 10.11883/bzycj-2021-0330
引用本文: 敬霖, 刘凯, 王成全. 列车碰撞被动安全性与司乘人员冲击生物损伤研究进展[J]. 爆炸与冲击, 2021, 41(12): 121405. doi: 10.11883/bzycj-2021-0330
JING Lin, LIU Kai, WANG Chengquan. Recentadvances in the collision passive safety of trains andimpact biological damage of drivers and passengers[J]. Explosion And Shock Waves, 2021, 41(12): 121405. doi: 10.11883/bzycj-2021-0330
Citation: JING Lin, LIU Kai, WANG Chengquan. Recentadvances in the collision passive safety of trains andimpact biological damage of drivers and passengers[J]. Explosion And Shock Waves, 2021, 41(12): 121405. doi: 10.11883/bzycj-2021-0330

列车碰撞被动安全性与司乘人员冲击生物损伤研究进展

doi: 10.11883/bzycj-2021-0330
基金项目: 国家自然科学基金(12122211)
详细信息
    通讯作者:

    敬 霖(1984- ),男,博士,研究员,博士生导师,jinglin@swjtu.edu.cn

  • 中图分类号: O389;U270.1

Recentadvances in the collision passive safety of trains andimpact biological damage of drivers and passengers

  • 摘要: 尽管铁路客运列车具有系列的主动安全保障措施,但列车服役中的意外碰撞事故仍不能完全避免,并且一旦发生,将造成严重的人员伤亡和巨大的经济损失。随着列车运行速度的不断提高,列车碰撞安全与冲击防护问题愈发受到关注和重视,并已开展了大量的探索和研究。本文中综述了列车碰撞被动安全性与司乘人员冲击生物损伤的若干研究进展。首先,统计和梳理了近些年的列车碰撞事故,分析了典型列车碰撞事故中存活人员的生物损伤分布情况;其次,介绍了列车碰撞被动安全性的研究方法,总结了列车碰撞后的响应姿态与脱轨机理;然后,从车辆耐撞性设计与评价标准、基于多级能量耗散的吸能结构设计、基于碰撞能量管理的列车结构耐撞性设计三个方面,详细阐述了列车碰撞被动安全性的研究进展;最后,关注了司乘人员在列车碰撞过程中的冲击生物损伤,总结了相关减轻司机和乘客生物损伤的防护措施。
  • 图  1  铁路列车碰撞事故(图片来自网络)[27-32]

    Figure  1.  Collision accidents of railway vehicles (figures from the website) [27-32]

    图  2  1900~2019年间各洲铁路事故伤亡人数[33]

    Figure  2.  Statistics of injuries and deaths in global railwayaccidents from 1900 to 2019[33]

    图  3  1950~2020年间我国铁路事故伤亡人数[34]

    Figure  3.  Statistics of injuries and deaths in railway accidents in China from 1950 to 2020[34]

    图  4  列车碰撞数值仿真模型

    Figure  4.  Numerical simulation models of train collision

    图  5  国外列车碰撞试验线

    Figure  5.  Test lines of vehicle collision abroad

    图  6  我国的列车碰撞试验台

    Figure  6.  Test beds of railway vehicle collision in China

    图  7  列车碰撞1∶8缩比模型[51]

    Figure  7.  Scaled-model of vehicle collision[51]

    图  8  列车碰撞变形过程和应力波传播的简化理论模型[56]

    Figure  8.  A simplified theoretical model for train collision deformation process and stress wave propagation[56]

    图  9  列车碰撞响应姿态示意图[57]

    Figure  9.  Schematic diagram of response posture during train collision[57]

    图  10  列车碰撞脱轨边界线[74]

    Figure  10.  The boundary line of derailment under train collision[74]

    图  11  列车碰撞能量分级吸收系统[57,93]

    Figure  11.  The graded energy absorption system of train collision[57,93]

    图  12  列车碰撞过程中理想的力-位移曲线[93]

    Figure  12.  The ideal force-displacement curves during train collision process[93]

    图  13  带螺栓剪切的车钩缓冲装置力-位移曲线[111]

    Figure  13.  Force-displacement curve of coupler buffering device with bolt shear[111]

    图  14  防爬器对两列车碰撞行为的影响[14]

    Figure  14.  Influence of anti-climbing device on the train collision behavior [14]

    图  15  不同类型防爬器示意图[123]

    Figure  15.  Schematic diagram of different types of anti-climbing devices[123]

    图  16  蜂窝吸能装置的布置[129]

    Figure  16.  The arrangements of honeycomb energy-absorbing device[129]

    图  17  碰撞试验后的车体变形情况[142]

    Figure  17.  Deformation of car body after crash test[142]

    图  18  优化后的列车碰撞界面压缩量和冲击能量分布情况[36]

    Figure  18.  The distribution of compression and impact energy in train collision interface after optimization[36]

    图  19  身体各部位的损伤比例[147]

    Figure  19.  The proportion of injuries in different parts of body[147]

    图  20  座椅与乘员间的撞击过程[153]

    Figure  20.  The collision process between the seat and the occupant[153]

    图  21  管式和板式座椅隔离装置及其对乘客胸部损伤的影响[157]

    Figure  21.  The tubular and plate dividers of seat and its influence on chest injury[157]

    图  22  乘员和车辆在碰撞过程中的速度变化曲线[148]

    Figure  22.  The velocity curves of occupants and vehicles in a collision[148]

    图  23  安全带在保护乘员中发挥的作用[162]

    Figure  23.  The role of seat belts in protecting occupants[162]

    图  24  改进后的小桌板结构示意图[163]

    Figure  24.  The structural diagram of the improved workstation table[163]

    图  25  改进后的司机室保护装置及耐撞性测试[170]

    Figure  25.  The improved protection device cab and the corresponding crashworthiness test[170]

    表  1  近些年典型的列车碰撞事故(数据源自网络)

    Table  1.   Typical train collision accidents in recent years at home and abroad (data from the website)

    年份国家事发地点碰撞类型事故后果
    1988法国巴黎里昂车站客车撞击静止列车56人死亡、57人受伤
    1997中国京广线湖南境内客车追尾碰撞126 人死亡、230 人受伤,直接经济损失超过415.53万元
    1999印度盖萨尔火车站客车正面碰撞超过500 人死亡、近1000 人受伤
    2005巴基斯坦信德省格特基地区追尾脱轨后与第3列客车碰撞150人死亡、约1000人受伤
    2005日本JR福知山线客车脱轨后撞击大楼107人死亡、562人受伤
    2007法国邻近瑞士边境客车撞击货车1人死亡、35人受伤
    2008法国阿尔卑斯山阿兰日镇客车撞击校车7人死亡、25人受伤
    2008美国洛杉矶客车撞击货车25人死亡、135人受伤
    2009中国京广铁路郴州站客车侧面碰撞3人死亡、63人受伤
    2011中国甬温线浙江境内客车追尾碰撞40人死亡、200多人受伤,直接经济损失超过1.93亿元
    2012德国法兰克福东部郊区客车撞击工程车3人死亡、13人受伤
    2013瑞士沃州格朗日地区客车正面碰撞1人死亡、35人受伤
    2013西班牙圣地亚哥附近客车脱轨后撞击护栏至少77人死亡、143人受伤
    2015瑞士苏黎世州拉夫兹站客车追尾碰撞至少50人受伤
    2016德国慕尼黑巴特艾布灵镇客车正面碰撞11人死亡、80余人受伤
    2017西班牙马德里附近客车撞击障碍物45人受伤
    2017德国北威州客车撞击货车约50人受伤
    2018美国南卡罗来纳州客车正面撞击货车至少2 人死亡、百余人受伤
    2019日本神奈川县客车撞击卡车1人死亡、约32人受伤
    2021中国台湾花莲大清水隧道客车侧面撞击工程车49人死亡、近200人受伤
    2021巴基斯坦信德省戈特基地区脱轨后撞击客车至少36人死亡、超过70人受伤
    下载: 导出CSV

    表  2  “7·23”甬温线动车碰撞事故中存活伤员受伤部位分布情况[35]

    Table  2.   Distribution of injured parts of the survivors in EMU collision accident on Ningbo-Wenzhou railway line[35]

    受伤部位颅脑颌面脊椎骨盆四肢体表
    人数16155411326735135
    占比/%5.465.121.7113.994.448.872.3911.9546.07
    下载: 导出CSV

    表  3  各国车辆耐撞性设计标准对比

    Table  3.   The comparison of design standard for vehicle crashworthiness in different countries

    标准车钩纵向力防爬能力加/减速度适用范围
    英国GM/RT 2100压缩载荷2 000 kN;
    拉伸载荷1500 kN
    垂向载荷100 kN;横向载荷100 kN;
    压缩载荷1000 kN
    无明确规定200 km/h以上列车
    欧盟EN 15227压缩载荷2 000 kN;
    拉伸载荷1000 kN
    垂向载荷150 kN,至少保证
    一个车轮与钢轨接触
    加速度≤5g;减速度≤7.5g各类型客车
    美国FRA法规压缩载荷3560 kN中部垂向载荷445 kN;
    端部垂向载荷890 kN
    ≤8g128~240 km/h客车
    欧盟TSI压缩载荷1500 kN端部应安装防爬装置≤5g各类车辆(190 km/h以上)
    中国TB/T 3500-2018无明确规定每个转向架至少有一个轮对
    在轨道上方的垂直位移不大
    于轮缘名义高度的75%
    加速度≤5g;减速度≤7.5g200 km/h以上动车组及部件
    下载: 导出CSV

    表  4  列车碰撞中司机冲击损伤试验结果[159]

    Table  4.   The test results of impact damage for driver during train collision process[159]

    损伤指标试验结果最大耐受水平
    Chi,1518.6500
    头部加速度23.5g80g
    胸部压缩量/m0.0810.05
    颈部损伤Nij0.191
    股骨力-左/N167.687560
    股骨力-右/N170.457560
    胫骨指数-左1.31.3
    胫骨指数-右0.31.3
    胫骨压缩力-左/N4.178000
    胫骨压缩力-右/N6.178000
    下载: 导出CSV

    表  5  试验测得的司机各关键部位生物损伤指标[169]

    Table  5.   The biological damage indexes of key parts for drivers measured from tests[169]

    损伤指标胸部压缩量/mm胸部加速度颈部伸长力矩/mN头部加速度Chi股骨载荷/kN
    无任何约束8494.3g37.237.3g20010.0
    配备安全带7941.5g45.040.6g2974.5
    安装气囊2731.0g7.931.0g14.0
    标准限值5057.080.0g10009.07(0<t<10 ms)
    7.58(t>10 ms)
    下载: 导出CSV
  • [1] 余也艺. 高速运输系统安全 [M]. 北京: 中国铁道出版社, 1996.
    [2] 雷成, 肖守讷, 罗世辉, 等. 轨道车辆耐碰撞性研究进展 [J]. 铁道学报, 2013, 35(1): 31–40. DOI: 10.3969/j.issn.1001-8360.2013.01.005.

    LEI C, XIAO S N, LUO S H, et al. State-of-the-art research development of rail vehicles crashworthiness [J]. Journal of the China Railway Society, 2013, 35(1): 31–40. DOI: 10.3969/j.issn.1001-8360.2013.01.005.
    [3] ZHU T, XIAO S N, LEI C, et al. Rail vehicle crashworthiness based on collision energy management: an overview [J]. International Journal of Rail Transportation, 2021, 9(2): 101–131. DOI: 10.1080/23248378.2020.1777908.
    [4] GAO G J, ZHUO T Y, GUAN W Y. Recent research development of energy-absorption structure and application for railway vehicles [J]. Journal of Central South University, 2020, 27(4): 1012–1038. DOI: 10.1007/s11771-020-4349-3.
    [5] GUAN WY, GAO G J, YU Y, et al. Crashworthiness analysis and multi-objective optimization of expanding circular tube energy absorbers with cylindrical anti-clamber under eccentric loading for subway vehicles [J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1711–1729. DOI: 10.1007/s00158-019-02427-z.
    [6] LI Z X, MA W, YAO S G, et al. Crashworthiness performance of corrugation-reinforced multicell tubular structures [J]. International Journal of Mechanical Sciences, 2021, 190: 106038. DOI: 10.1016/j.ijmecsci.2020.106038.
    [7] Railway Group Standard. Requirements for rail vehicle structures: GM/RT 2100 [S]. London: Rail Safety and Standards Board Limited, 2012.
    [8] 张振淼, 逄增祯. 轨道车辆碰撞能量吸收装置原理及结构设计(待续) [J]. 国外铁道车辆, 2001, 38(3): 13–19. DOI: 10.3969/j.issn.1002-7610.2001.03.004.

    ZHAGN Z M, PANG Z Z. Principles and structure design of collision energy absorption equipment for rail cars (to be continued) [J]. Foreign Rolling Stock, 2001, 38(3): 13–19. DOI: 10.3969/j.issn.1002-7610.2001.03.004.
    [9] BSI Standards. Railway applications—Crashworthiness requirements for railway vehicle bodies: BSEN 15227: 2008+A1: 2010 [S]. Brussels: The British Standards Institution, 2011.
    [10] TYRELL D, SEVERSON K, PERLMAN B. An overview of passenger equipment full scale impact tests: results to date [C] //Proceedings of the World Congress on Railway Research. Cologne, Germany: World Congress on Railway Research, 2001.
    [11] TYRELL D, SEVERSON K, PERLMAN A B. Single passenger rail car impact test. Volume Ⅰ: overview and selected results: DOT/FRA/ORD-00/02.1 [R]. Washington: U. S. Department of TransportationFederal RailroadAdministration, 2000.
    [12] VANINGEN-DUNN C. Single passenger rail car impact test. Volume Ⅱ: summary of occupant protection program: DOT/FRA/ORD-00/02.2 [R]. Washington: U. S. Department of TransportationFederal RailroadAdministration, 2000.
    [13] TYRELL D, SEVERSON K, ZOLOCK J, et al. Passenger rail two-car impact test. Volume Ⅰ: overview and selected results: DOT/FRA/ORD-01/22.1 [R]. Washington: U. S. Department of TransportationFederal RailroadAdministration, 2002.
    [14] TYRELL D, JACOBSEN K, MARTINEZ E, et al. Train-to-train impact test of crash energy management passenger rail equipment: structural results [C] // Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago: ASME, 2006. DOI: 10.1115/IMECE2006-13597.
    [15] 畑弘敏, 刘克鲜, 王凤洲. 运用碰撞仿真技术进行提高铁道车辆安全性的研究 [J]. 国外铁道车辆, 2004, 41(6): 22–27,31. DOI: 10.3969/j.issn.1002-7610.2004.06.007.

    TIAN H M, LIU K X, WANG F Z. Research on improvement of rolling stock safety with the collision simulation technology [J]. Foreign Rolling Stock, 2004, 41(6): 22–27,31. DOI: 10.3969/j.issn.1002-7610.2004.06.007.
    [16] 谢素超, 田红旗, 姚松. 车辆吸能部件的碰撞试验与数值仿真 [J]. 交通运输工程学报, 2008, 8(3): 1–5. DOI: 10.3321/j.issn:1671-1637.2008.03.001.

    XIE S C, TIAN H Q, YAO S. Impacting experiment and numerical simulation of energy-absorbing component of vehicles [J]. Journal of Traffic and Transportation Engineering, 2008, 8(3): 1–5. DOI: 10.3321/j.issn:1671-1637.2008.03.001.
    [17] 刘金朝, 房加志, 王成国, 等. 铁道客车大变形碰撞仿真研究 [J]. 中国铁道科学, 2004, 25(6): 1–8. DOI: 10.3321/j.issn:1001-4632.2004.06.001.

    LIU J Z, FANG J Z, WANG C G, et al. Simulation research on finite deformation crashworthiness of railway passenger car [J]. China Railway Science, 2004, 25(6): 1–8. DOI: 10.3321/j.issn:1001-4632.2004.06.001.
    [18] 李兰. 城轨车辆耐碰撞结构设计及其乘员安全数字仿真研究 [D]. 北京: 铁道科学研究院, 2007.
    [19] 张乐乐, 张啸雨, 崔进, 等. 地铁头车车体耐撞性仿真分析 [J]. 铁道学报, 2012, 34(3): 22–27. DOI: 10.3969/j.issn.1001-8360.2012.03.004.

    ZHANG L L, ZHANG X Y, CUI J, et al. Numerical analysis on crashworthiness of subway head-car body [J]. Journal of the China Railway Society, 2012, 34(3): 22–27. DOI: 10.3969/j.issn.1001-8360.2012.03.004.
    [20] 卫亮, 张乐乐, 崔进, 等. 地铁碰撞事故中站姿假人的响应仿真与损伤预测 [J]. 铁道学报, 2015, 37(1): 16–23. DOI: 10.3969/j.issn.1001-8360.2015.01.003.

    WEI L, ZHANG L L, CUI J, et al. Response simulation and injury prediction of standing dummy in a subway collision [J]. Journal of the China Railway Society, 2015, 37(1): 16–23. DOI: 10.3969/j.issn.1001-8360.2015.01.003.
    [21] 王存义, 张乐乐, 卫亮, 等. 基于坐姿假人的地铁乘员二次碰撞损伤影响分析 [J]. 铁道学报, 2015, 37(3): 14–22. DOI: 10.3969/j.issn.1001-8360.2015.03.003.

    WANG C Y, ZHANG L L, WEI L, et al. Analysis of secondary impact on passenger injuries in a subway vehicle based on sitting dummy [J]. Journal of the China Railway Society, 2015, 37(3): 14–22. DOI: 10.3969/j.issn.1001-8360.2015.03.003.
    [22] WANG W B, REN L H, ZHOU H C, et al. Energy absorption configuration of crashworthy metro train [J]. Advanced Materials Research, 2012, 466/467: 724–728. DOI: 10.4028/www.scientific.net/AMR.466-467.724.
    [23] WALDECK H, 肖守讷. ICE动力车碰撞仿真 [J]. 控制与信息技术, 1996(4): 26–32. DOI: 10.13889/j.issn.2095-3631.1996.04.006.

    WALDECK H, XIAO S N. ICE powered car crash simulation [J]. Control and Information Technology, 1996(4): 26–32. DOI: 10.13889/j.issn.2095-3631.1996.04.006.
    [24] 张志新, 肖守讷, 阳光武, 等. 高速列车乘员碰撞安全性研究 [J]. 铁道学报, 2013, 35(10): 24–32. DOI: 10.3969/j.issn.1001-8360.2013.10.004.

    ZHAGN Z X, XIAO S N, YANG G W, et al. Research on collision safety of high-speed train crews & passengers [J]. Journal of the China Railway Society, 2013, 35(10): 24–32. DOI: 10.3969/j.issn.1001-8360.2013.10.004.
    [25] 雷成, 肖守讷, 罗世辉. 基于显式有限元的高速列车吸能装置吸能原理研究 [J]. 铁道机车车辆, 2012, 32(2): 1–4. DOI: 10.3969/j.issn.1008-7842.2012.02.001.

    LEI C, XIAO S N, LUO S H. Research on the energy-absorbing theory of high speed train energy-absorbing component based on the explicit finite element [J]. Railway Locomotive & Car, 2012, 32(2): 1–4. DOI: 10.3969/j.issn.1008-7842.2012.02.001.
    [26] 丁兆洋, 郑志军, 虞吉林. 列车分布式吸能系统的波传播特性和参数分析 [J]. 爆炸与冲击, 2019, 39(3): 035101. DOI: 10.11883/bzycj-2018-0053.

    DING Z Y, ZHENG Z J, YU J L. Wave propagation characteristics and parameter analysis of the distributed energy absorption system of trains [J]. Explosion and Shock Waves, 2019, 39(3): 035101. DOI: 10.11883/bzycj-2018-0053.
    [27] 腾讯网. 日本40年来最严重铁路事故—福知山线脱轨事故 [EB/OL]. (2021-04-26) [2021-12-8]. https://new.qq.com/rain/a/20210426V0CB5C00.
    [28] 央视网. 追问7·23动车追尾事故 [EB/OL]. (2011-07-27) [2021-12-8]. https://tv.cctv.com/2011/07/27/VIDE1336928346085433.shtml.
    [29] 央视网. 瑞士: 发生火车相撞事故, 多人受伤 [EB/OL]. (2015-02-21) [2021-12-8]. http://tv.cctv.com/2015/02/21/VIDE1424453038742862.shtml.
    [30] 凤凰网. 德国两辆火车迎面相撞, 死伤者多达上百人 [EB/OL]. (2016-02-09) [2021-12-8]. https://news.ifeng.com/a/20160209/47400747_0.shtml.
    [31] 央视网. 美国南卡罗来纳州发生列车相撞事故, 2人死亡 [EB/OL]. (2018-02-05) [2021-12-8]. http://tv.cctv.com/2018/02/05/VIDEqbGvWMYAeF5O1r18sDzs180205.shtml.
    [32] 腾讯网. 台湾列车脱轨事故[EB/OL]. (2021-04-19) [2021-12-8]. https://new.qq.com/rain/a/20210419a0ek7y00.
    [33] FORSBERG R, BJÖRNSTIG U. One hundred years of railway disasters and recent trends [J]. Prehospital and Disaster Medicine, 2011, 26(5): 367–373. DOI: 10.1017/S1049023X1100639X.
    [34] 维基百科. 中华人民共和国铁路事故列表 [EB/OL]. (2021-06-04)[2021-07-27].https://zh.wikipedia.org/wiki/%E4%B8%AD%E5%8D%8E%E4%BA%BA%E6%B0%91%E5%85%B1%E5%92%8C%E5%9B%BD%E9%93%81%E8%B7%AF%E4%BA%8B%E6%95%85%E5%88%97%E8%A1%A8.
    [35] 闻浩, 林露阳, 陈大庆, 等. “7·23”温州动车事故存活伤员损伤特点及救治分析 [J]. 中华急诊医学杂志, 2011, 20(12): 1248–1250. DOI: 10.3760/cma.j.issn.1671-0282.2011.12.005.

    WEN H, LIN L Y, CHEN D Q, et al. Features of survived casualties and treatment after “July23” EMU railway accident at Wenzhou station [J]. Chinese Journal of Emergency Medicine, 2011, 20(12): 1248–1250. DOI: 10.3760/cma.j.issn.1671-0282.2011.12.005.
    [36] ZHANG H H, PENG Y, HOU L, et al. Multistage impact energy distribution for whole vehicles in high-speed train collisions: modeling and solution methodology [J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2486–2499. DOI: 10.1109/TII.2019.2936048.
    [37] DIAS J P, PEREIRA M S. Optimization methods for crashworthiness design using multibody models [J]. Computers & Structures, 2004, 82(17/18/19): 1371–1380. DOI: 10.1016/j.compstruc.2004.03.032.
    [38] ZHU T, XIAO S N, HU G Z, et al. Crashworthiness analysis of the structure of metro vehicles constructed from typical materials and the lumped parameter model of frontal impact [J]. Transport, 2019, 34(1): 75–88. DOI: 10.3846/transport.2019.7552.
    [39] 李松晏, 郑志军, 虞吉林. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.

    LI S Y, ZHENG Z J, YU J L. Energy-absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35(2): 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.
    [40] KOO J S, YOUN Y H. Crashworthy design and evaluation on the front-end structure of Korean high speed train [J]. International Journal of Automotive Technology, 2004, 5(3): 173–180. DOI: 10.1109/TVT.2004.832409.
    [41] XUE X, SCHMID F, SMITH R A. Analysis of the structural characteristics of an intermediate rail vehicle and their effect on vehicle crash performance [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2007, 221(3): 339–352. DOI: 10.1243/09544097jrrt77.
    [42] XUE X, SCHMID F, SMITH R A. A study of modelling approaches for rail vehicle collision behaviour [J]. International Journal of Crashworthiness, 2004, 9(5): 515–525. DOI: 10.1533/ijcr.2004.0307.
    [43] 周和超, 徐世洲, 詹军, 等. 基于有限元和多刚体动力学联合仿真技术的列车碰撞爬车现象研究 [J]. 机械工程学报, 2017, 53(12): 166–171. DOI: 10.3901/JME.2017.12.166.

    ZHOU H C, XU S Z, ZHAN J, et al. Research on the overriding phenomenon during train collision based on FEM and MBS joint simulation [J]. Journal of Mechanical Engineering, 2017, 53(12): 166–171. DOI: 10.3901/JME.2017.12.166.
    [44] HECHT M. 有轨电车和轻轨车辆的防碰撞性 [J]. 国外铁道车辆, 2005, 42(5): 39–41. DOI: 10.3969/j.issn.1002-7610.2005.05.008.

    HECHT M. The crashworthiness of tramcar and LRV [J]. Foreign Rolling Stock, 2005, 42(5): 39–41. DOI: 10.3969/j.issn.1002-7610.2005.05.008.
    [45] 王万静, 梁建英, 崔洪举, 等. 铁道车辆车体撞击试验台建设必要性分析及建议 [J]. 国外铁道车辆, 2013, 50(6): 1–6. DOI: 10.3969/j.issn.1002-7610.2013.06.001.

    WANG W J, LIANG J Y, CUI H J, et al. The necessity analysis of construction of the impact test bench for rolling stock carbodies [J]. Foreign Rolling Stock, 2013, 50(6): 1–6. DOI: 10.3969/j.issn.1002-7610.2013.06.001.
    [46] 中南大学高性能复杂制造国家重点实验室. “列车碰撞试验系统构建与安全评估理论”研究进展 [EB/OL]. (2018-04-19)[2021-07-27]. https://hpcm.csu.edu.cn/info/1016/1014.htm.
    [47] XU P, YANG C X, PENG Y, et al. Crash performance and multi-objective optimization of a gradual energy-absorbing structure for subway vehicles [J]. International Journal of Mechanical Sciences, 2016, 107: 1–12. DOI: 10.1016/j.ijmecsci.2016.01.001.
    [48] 刘志祥, 王万静, 张志强, 等. 基于电机牵引方式的轨道车辆碰撞试验台研制 [J]. 中国基础科学, 2018, 20(6): 11–14,24. DOI: 10.3969/j.issn.1009-2412.2018.06.003.

    LIU Z X, WANG W J, ZHANG Z Q, et al. Research and development of the crash test bench for railway vehicles based on motor traction [J]. China Basic Science, 2018, 20(6): 11–14,24. DOI: 10.3969/j.issn.1009-2412.2018.06.003.
    [49] 中国中车. 76km/h ! 中车完成高速列车最高速实车对撞试验[EB/OL]. (2019-09-27)[2021-11-03]. https://mp.weixin.qq.com/s/UwbHZvtvtdhqHAg_8M7www.
    [50] 高广军, 于尧, 关维元. 用于碰撞实验的列车缩比等效模型构建方法及其系统: CN107798171A [P]. 2018-03-13.
    [51] LU S S, XU P, YAN K B, et al. A force/stiffness equivalence method for the scaled modelling of a high-speed train head car [J]. Thin-Walled Structures, 2019, 137: 129–142. DOI: 10.1016/j.tws.2019.01.016.
    [52] YU Y, GAO G J, GUAN W Y, et al. Scale similitude rules with acceleration consistency for trains collision [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2466–2480. DOI: 10.1177/0954409718773562.
    [53] JONES N. Structural impact [M]. Cambridge: Cambridge University Press, 2010. DOI: 10.1017/CBO9780511624285.
    [54] 田红旗, 卢执中. 列车撞击动力学建模研究 [J]. 铁道车辆, 1997, 35(4): 8–11.

    TIAN H Q, LU Z Z. High speed trains modelling study on train impact dynamics [J]. Rolling Stock, 1997, 35(4): 8–11.
    [55] 卢毓江, 肖守讷, 朱涛, 等. 列车纵向-垂向碰撞动力学耦合模型建模与研究 [J]. 铁道学报, 2014, 36(12): 6–13. DOI: 10.3969/j.issn.1001-8360.2014.12.002.

    LU Y J, XIAO S N, ZHU T, et al. Construction of dynamic coupling model of longitudinal-vertical train crash [J]. Journal of the China Railway Society, 2014, 36(12): 6–13. DOI: 10.3969/j.issn.1001-8360.2014.12.002.
    [56] DING Z Y, ZHENG Z J, YU J L. A wave propagation model of distributed energy absorption system for trains [J]. International Journal of Crashworthiness, 2019, 24(5): 508–522. DOI: 10.1080/13588265.2018.1479482.
    [57] 王文斌. 轨道车辆耐碰撞结构及乘员安全防护技术研究[D]. 上海: 同济大学, 2006.
    [58] SCHOLES A, LEWIS J H. Development of crashworthiness for railway vehicle structures [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 1–16. DOI: 10.1243/PIME_PROC_1993_207_222_02.
    [59] SCHOLES A. Railway passenger vehicle design loads and structural crashworthiness [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 1987, 201(3): 201–207. DOI: 10.1243/PIME_PROC_1987_201_177_02.
    [60] HAN H S, KOO J S. Simulation of train crashes in three dimensions [J]. Vehicle System Dynamics, 2003, 40(6): 435–450. DOI: 10.1076/vesd.40.6.435.17906.
    [61] MAYVILLE R, RANCATORE R, TEGELER L. Investigation and simulation of lateral buckling in trains [C] // Proceedings of the 1999 ASME/IEEE Joint Railroad Conference. Dallas: IEEE, 1999. DOI: 10.1109/RRCON.1999.762407.
    [62] KIRKPATRICK S W, SCHROEDER M, SIMONS J W. Evaluation of passenger rail vehicle crashworthiness [J]. International Journal of Crashworthiness, 2001, 6(1): 95–106. DOI: 10.1533/cras.2001.0165.
    [63] BAYKASOGLU C, MUGAN A, SUNBULOGLU E, et al. Rollover crashworthiness analysis of a railroad passenger car [J]. International Journal of Crashworthiness, 2013, 18(5): 492–501. DOI: 10.1080/13588265.2013.809645.
    [64] CUARTERO J, LIZARANZU M, CASTEJÓN L, et al. Evaluation of passenger railroad car roll over crashworthiness [J]. International Journal of Crashworthiness, 2006, 11(5): 419–424. DOI: 10.1533/ijcr.2005.0120.
    [65] KOO J S, CHOI S Y. Theoretical development of a simplified wheelset model to evaluate collision-induced derailments of rolling stock [J]. Journal of Sound and Vibration, 2012, 331(13): 3172–3198. DOI: 10.1016/j.jsv.2012.02.014.
    [66] WU X W, CHI M R, GAO H. The study of post-derailment dynamic behavior of railway vehicle based on running tests [J]. Engineering Failure Analysis, 2014, 44: 382–399. DOI: 10.1016/j.engfailanal.2014.05.021.
    [67] WANG W, LI G X. Development of high-speed railway vehicle derailment simulation-Part Ⅱ: exploring the derailment mechanism [J]. Engineering Failure Analysis, 2012, 24: 93–111. DOI: 10.1016/j.engfailanal.2012.02.001.
    [68] LING L, DHANASEKAR M, WANG K Y, et al. Collision derailments on bridges containing ballastless slab tracks [J]. Engineering Failure Analysis, 2019, 105: 869–882. DOI: 10.1016/j.engfailanal.2019.07.042.
    [69] XU J M, WANG J, WANG P, et al. Study on the derailment behaviour of a railway wheelset with solid axles in a railway turnout [J]. Vehicle System Dynamics, 2020, 58(1): 123–143. DOI: 10.1080/00423114.2019.1566558.
    [70] ZHOU H C, WANG W B, HECHT M. Three-dimensional derailment analysis of a crashed city tram [J]. Vehicle System Dynamics, 2013, 51(8): 1200–1215. DOI: 10.1080/00423114.2013.790553.
    [71] KOO J S, CHO H J. A method to predict the derailment of rolling stock due to collision using a theoretical wheelset derailment model [J]. Multibody System Dynamics, 2012, 27(4): 403–422. DOI: 10.1007/s11044-011-9270-y.
    [72] CHO H J, KOO J S. A numerical study of the derailment caused by collision of a rail vehicle using a virtual testing model [J]. Vehicle System Dynamics, 2012, 50(1): 79–108. DOI: 10.1080/00423114.2011.563860.
    [73] YAO S G, ZHU H F, YAN K B, et al. The derailment behaviour and mechanism of a subway train under frontal oblique collisions [J]. International Journal of Crashworthiness, 2021, 26(2): 133–146. DOI: 10.1080/13588265.2019.1692506.
    [74] LING L, DHANASEKAR M, THAMBIRATNAM D P. Frontal collision of trains onto obliquely stuck road trucks at level crossings: derailment mechanisms and simulation [J]. International Journal of Impact Engineering, 2017, 100: 154–165. DOI: 10.1016/j.ijimpeng.2016.11.002.
    [75] LING L, DHANASEKAR M, THAMBIRATNAM D P, et al. Lateral impact derailment mechanisms, simulation and analysis [J]. International Journal of Impact Engineering, 2016, 94: 36–49. DOI: 10.1016/j.ijimpeng.2016.04.001.
    [76] LING L, DHANASEKAR M, THAMBIRATNAM D P. A passive road-rail crossing design to minimise wheel-rail contact failure risk under frontal collision of trains onto stuck trucks [J]. Engineering Failure Analysis, 2017, 80: 403–415. DOI: 10.1016/j.engfailanal.2017.07.003.
    [77] LING L, GUAN Q H, DHANASEKAR M, et al. Dynamic simulation of train-truck collision at level crossings [J]. Vehicle System Dynamics, 2017, 55(1): 1–22. DOI: 10.1080/00423114.2016.1240811.
    [78] BAE H U, YUN K M, LIM N H. Containment capacity and estimation of crashworthiness of derailment containment walls against high-speed trains [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(3): 680–696. DOI: 10.1177/0954409716684663.
    [79] BAE H U, YUN K M, MOON J, et al. Impact force evaluation of the derailment containment wall for high-speed train through a collision simulation [J]. Advances in Civil Engineering, 2018, 2018: 2626905. DOI: 10.1155/2018/2626905.
    [80] SONG I H, KIM J W, KOO J S, et al. Modeling and simulation of collision-causing derailment to design the derailment containment provision using a simplified vehicle model [J]. Applied Sciences, 2019, 10(1): 118. DOI: 10.3390/app10010118.
    [81] International Union of Railways. Loadings of coach bodies and their components: UIC-566 [S]. Paris: International Union of Railways, 1990.
    [82] BSI Standards. 2014 Railway applications—structural requirements of railway vehicle bodies–part 1: locomotives and passenger rolling stock (and alternative method for freight wagons): BS EN 12663-1: 2010+A1 [S]. Brussels: The British Standards Institution, 2015.
    [83] BSI Standards. 2010 Railway applications-structural requirements of railway vehicle bodies–part 2: freight wagons: BS EN 12663-2 [S]. Brussels: The British Standards Institution, 2010.
    [84] European Union. Technical specification for interoperability (TSI) [S]. Brussels: Official Journal of the European Union, 2008.
    [85] ATOC Vehicle Standard. AV/ST9001 Vehicle interior crashworthiness [S]. London: Association of Train Operating Companies, 2002.
    [86] Federal Railroad Administration. 49 CFR Part 229Railroad locomotive safety standards [S]. Florida: U. S. Department of Transportation Federal Railroad Administration, 2006.
    [87] Federal Railroad Administration. 49 CFR Part 238Passenger equipment safety standards [S]. Florida: U. S. Department of Transportation Federal Railroad Administration, 2003.
    [88] Association of American Railroads. Standard S-580: mechanical section-manual of standards and recommended practices, locomotive crashworthiness requirements [S]. Washington: Association of American Railroads, 1994.
    [89] American Public Transportation Association. Manual of standards and recommended practices for passenger rail equipment [R]. Washington: American Public Transportation Association, 1999.
    [90] Passenger Rail Equipment Safety Standards (PRESS) Construction and Structural Working Group. Standard for the design and construction of passenger railroad rolling stock: APTA SS-C& S-034-99 [S]. Washington: American Public Transportation Association, 2000.
    [91] 国家铁路局. 动车组车体耐撞性要求与验证规范:TB/T 3500-2018[S]. 北京: 中国铁道出版社, 2018.
    [92] 国家铁路局. 机车车辆碰撞试验测试方法:TB/T 3501-2018[S]. 北京: 中国铁道出版社, 2018.
    [93] SHAO H, XU P, YAO S G, et al. Improved multibody dynamics for investigating energy dissipation in train collisions based on scaling laws [J]. Shock and Vibration, 2016, 2016: 3084052. DOI: 10.1155/2016/3084052.
    [94] CHEN D. Derailment risk due to coupler jack-knifing under longitudinal buff force [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224(5): 483–490. DOI: 10.1243/09544097JRRT363.
    [95] EL-SIBAIE M. Recent advancements in buff and draft testing techniques [C] // Proceedings of the 1993 IEEE/ASME Joint Railroad Conference. Pittsburgh: IEEE, 1993: 115-119. DOI: 10.1109/rrcon.1993.292955.
    [96] LEWIS J H, RASAIAH W G, SCHOLES A. Validation of measures to improve rail vehicle crashworthiness [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1996, 210(2): 73–85. DOI: 10.1243/PIME_PROC_1996_210_330_02.
    [97] JAHROMI A G, HATAMI H. Energy absorption performance on multilayer expanded metal tubes under axial impact [J]. Thin-Walled Structures, 2017, 116: 1–11. DOI: 10.1016/j.tws.2017.03.005.
    [98] HATAMI H, RAD M S, JAHROMI A G. A theoretical analysis of the energy absorption response of expanded metal tubes under impact loads [J]. International Journal of Impact Engineering, 2017, 109: 224–239. DOI: 10.1016/j.ijimpeng.2017.06.009.
    [99] NOURI M D, HATAMI H, JAHROMI A G. Experimental and numerical investigation of expanded metaltube absorber under axial impact loading [J]. Structural Engineering and Mechanics, 2015, 54(6): 1245–1266. DOI: 10.12989/sem.2015.54.6.1245.
    [100] HATAMI H, NOURI M D. Experimental and numerical investigation of lattice-walled cylindrical shell under low axial impact velocities [J]. Latin American Journal of Solids and Structures, 2015, 12(10): 1950–1971. DOI: 10.1590/1679-78251919.
    [101] YANG J L, LUO M, HUA Y L, et al. Energy absorption of expansion tubes using a conical–cylindrical die: experiments and numerical simulation [J]. International Journal of Mechanical Sciences, 2010, 52(5): 716–725. DOI: 10.1016/j.ijmecsci.2009.11.015.
    [102] QI C, YANG S, DONG F L. Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading [J]. Thin-Walled Structures, 2012, 59: 103–119. DOI: 10.1016/j.tws.2012.05.008.
    [103] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminum tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. DOI: 10.1016/S0020-7403(01)00031-5.
    [104] REDDY T Y. Guist and marble revisited—on the natural knuckle radius in tube inversion [J]. International Journal of Mechanical Sciences, 1992, 34(10): 761–768. DOI: 10.1016/0020-7403(92)90040-N.
    [105] REID S R, HARRIGAN J J. Transient effects in the quasi-static and dynamic internal inversion and nosing of metal tubes [J]. International Journal of Mechanical Sciences, 1998, 40(2/3): 263–280. DOI: 10.1016/S0020-7403(97)00054-4.
    [106] SHAKERI M, SALEHGHAFFARI S, MIRZAEIFAR R. Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation [J]. International Journal of Crashworthiness, 2007, 12(5): 493–501. DOI: 10.1080/13588260701483540.
    [107] AL-ABRI O S, PERVEZ T. Structural behavior of solid expandable tubular undergoes radial expansion process–Analytical, numerical, and experimental approaches [J]. International Journal of Solids and Structures, 2013, 50(19): 2980–2994. DOI: 10.1016/j.ijsolstr.2013.05.013.
    [108] SEIBI A C, BARSOUM I, MOLKI A. Experimental and numerical study of expanded aluminum and steel tubes [J]. Procedia Engineering, 2011, 10: 3049–3055. DOI: 10.1016/j.proeng.2011.04.505.
    [109] LI J, GAO G J, DONG H P, et al. Study on the energy absorption of the expanding–splitting circular tube by experimental investigations and numerical simulations [J]. Thin-Walled Structures, 2016, 103: 105–114. DOI: 10.1016/j.tws.2016.01.031.
    [110] YAN J L, YAO S G, XU P, et al. Theoretical prediction and numerical studies of expanding circular tubes as energy absorbers [J]. International Journal of Mechanical Sciences, 2016, 105: 206–214. DOI: 10.1016/j.ijmecsci.2015.11.022.
    [111] KIM J S, HUH H, KWON T S. Crashworthiness design of the shear bolts for light collision safety devices [J]. International Journal of Modern Physics B, 2008, 22(31–32): 5603–5608. DOI: 10.1142/S0217979208050887.
    [112] ZHU T, YANG B Z, YANG C, et al. The mechanism for the coupler and draft gear and its influence on safety during a train collision [J]. Vehicle System Dynamics, 2018, 56(9): 1375–1393. DOI: 10.1080/00423114.2017.1413198.
    [113] DUNCAN I B, WEBB P A. The longitudinal behaviour of heavy haul trains using remote locomotives [C] // Proceedings of theFourth International Heavy Haul Railway Conference. Brisbane: Institution of Engineers, 1989: 587-590.
    [114] LU G. Collision behaviour of crashworthy vehicles in rakes [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1999, 213(3): 143–160. DOI: 10.1243/0954409991531100.
    [115] MILHO J F, AMBRÓSIO J A C, PEREIRA M F O S. Validated multibody model for train crash analysis [J]. International Journal of Crashworthiness, 2003, 8(4): 339–352. DOI: 10.1533/ijcr.2003.0242.
    [116] 庞艳凤, 陈凯. 国内城轨车辆车钩缓冲装置应用情况和统型设想 [J]. 铁道车辆, 2011, 49(1): 22–25. DOI: 10.3969/j.issn.1002-7602.2011.01.007.

    PANG Y F, CHEN K. Application of coupler draft gears on domestic urban rail vehicles and the idea of unifying models [J]. Rolling Stock, 2011, 49(1): 22–25. DOI: 10.3969/j.issn.1002-7602.2011.01.007.
    [117] ZHOU H C, MEI M S, ZHANG J M, et al. Investigations on the vertical buckling of railway vehicle's anti-climber [J]. International Journal of Crashworthiness, 2021, 26(2): 171–181. DOI: 10.1080/13588265.2019.1701354.
    [118] YANG C, LI Q, XIAO S N, et al. On the overriding issue of train front end collision in rail vehicle dynamics [J]. Vehicle System Dynamics, 2018, 56(4): 506–528. DOI: 10.1080/00423114.2017.1394472.
    [119] YAO S G, XIAO X L, XU P, et al. The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles [J]. Thin-Walled Structures, 2018, 123: 360–370. DOI: 10.1016/j.tws.2017.10.031.
    [120] ZHOU H C, WANG W B, HECHT M. Three-dimensional override analysis of crashed railway multiple units [J]. Vehicle System Dynamics, 2012, 50(4): 663–674. DOI: 10.1080/00423114.2011.631552.
    [121] GAO G J, GUAN W Y, LI J, et al. Experimental investigation of an active–passive integration energy absorber for railway vehicles [J]. Thin-Walled Structures, 2017, 117: 89–97. DOI: 10.1016/j.tws.2017.03.029.
    [122] GUAN W Y, GAO G J, LI J, et al. Crushing analysis and multi-objective optimization of a cutting aluminum tube absorber for railway vehicles under quasi-static loading [J]. Thin-Walled Structures, 2018, 123: 395–408. DOI: 10.1016/j.tws.2017.11.031.
    [123] 岳伟玲. 轨道车辆拉削式防爬器吸能特性的研究[D]. 广州: 华南理工大学, 2014.
    [124] 张云峰, 杭志洲, 方炅任. 刨削式与整体型蜂窝式车辆防爬器对撞性能分析 [J]. 城市轨道交通研究, 2020, 23(2): 26–30. DOI: 10.16037/j.1007-869x.2020.02.007.

    ZHANG Y F, HANG Z Z, FANG J R. Collision performance analysis of planing and integral honeycombing anti-climbs for vehicles [J]. Urban Mass Transit, 2020, 23(2): 26–30. DOI: 10.16037/j.1007-869x.2020.02.007.
    [125] BAYKASOĞLU C, SÜNBÜLOĞLU E, BOZDAĞ S E, et al. Railroad passenger car collision analysis and modifications for improved crashworthiness [J]. International Journal of Crashworthiness, 2011, 16(3): 319–329. DOI: 10.1080/13588265.2011.566475.
    [126] XUE X, SMITH R A, SCHMID F. Analysis of crush behaviours of a rail cab car and structural modifications for improved crashworthiness [J]. International Journal of Crashworthiness, 2005, 10(2): 125–136. DOI: 10.1533/ijcr.2005.0332.
    [127] XIE S C, LIANG X F, ZHOU H, et al. Crashworthiness optimisation of the front-end structure of the lead car of a high-speed train [J]. Structural and Multidisciplinary Optimization, 2016, 53(2): 339–347. DOI: 10.1007/s00158-015-1332-y.
    [128] XIE S C, LIANG X F, ZHOU H. Design and analysis of a composite energy-absorbing structure for use on railway vehicles [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(3): 825–839. DOI: 10.1177/0954409714566058.
    [129] LI B H, LU Z J, YAN K B, et al. Experimental study of a honeycomb energy-absorbing device for high-speed trains [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1170–1183. DOI: 10.1177/0954409719882564.
    [130] PENG Y, DENG W Y, XU P, et al. Study on the collision performance of a composite energy-absorbing structure for subway vehicles [J]. Thin-Walled Structures, 2015, 94: 663–672. DOI: 10.1016/j.tws.2015.05.016.
    [131] SHARIFI S, SHAKERI M, FAKHARI H E, et al. Experimental investigation of bitubal circular energy absorbers under quasi-static axial load [J]. Thin-Walled Structures, 2015, 89: 42–53. DOI: 10.1016/j.tws.2014.12.008.
    [132] RAHI A. Controlling energy absorption capacity of combined bitubular tubes under axial loading [J]. Thin-Walled Structures, 2018, 123: 222–231. DOI: 10.1016/j.tws.2017.11.032.
    [133] VINAYAGAR K, KUMAR A S. Crashworthiness analysis of double section bi-tubular thin-walled structures [J]. Thin-Walled Structures, 2017, 112: 184–193. DOI: 10.1016/j.tws.2016.12.008.
    [134] AZIMI M B, ASGARI M. A new bi-tubular conical-circular structure for improving crushing behavior under axial and oblique impacts [J]. International Journal of Mechanical Sciences, 2016, 105: 253–265. DOI: 10.1016/j.ijmecsci.2015.11.012.
    [135] FANG J G, GAO Y K, SUN G Y, et al. Crashworthiness design of foam-filled bitubal structures with uncertainty [J]. International Journal of Non-Linear Mechanics, 2014, 67: 120–132. DOI: 10.1016/j.ijnonlinmec.2014.08.005.
    [136] TYRELL D, PERLMAN A B. Evaluation of rail passenger equipment crashworthiness strategies [J]. Transportation Research Record:Journal of the Transportation Research Board, 2003, 1825(1): 8–14. DOI: 10.3141/1825-02.
    [137] SEVERSON K J, TYRELL D C, PERLMAN A B. Collision safety comparison of conventional and crash energy management passenger rail car designs [C] // Proceedings of the IEEE/ASME 2003 Joint Rail Conference. Chicago: ASME, 2003: 83-90. DOI: 10.1115/rtd2003-1657.
    [138] 田红旗. 客运列车耐冲击吸能车体设计方法 [J]. 交通运输工程学报, 2001, 1(1): 110–114. DOI: 10.3321/j.issn:1671-1637.2001.01.028.

    TIAN H Q. Crashworthy energy absorbing car-body design method for pass enger train [J]. Journal of Triffic and Transportation Engineering, 2001, 1(1): 110–114. DOI: 10.3321/j.issn:1671-1637.2001.01.028.
    [139] JACOBSEN K, TYRELL D, PERLMAN B. Impact test of a crash-energy management passenger rail car [C] // Proceedings of the ASME/IEEE 2004 Joint Rail Conference. Baltimore: ASME, 2004. DOI: 10.1115/rtd2004-66045.
    [140] SEVERSON K J, PARENT D P. Train-to-train impact test of crash energy management passenger rail equipment: occupant experiments [C] // Proceedings of the ASME 2006 International Mechanical Engineering Congress and Exposition. Chicago: ASME, 2006. DOI: 10.1115/imece2006-14420.
    [141] TYRELL D, GORDON J. Crash energy management: an overview of federal railroad administration research [J]. TR News, 2013(286): 4–10.
    [142] JACOBSEN K M. Collision dynamics modeling of crash energy management passenger rail equipment [D]. Medford-Somerville: Tufts University, 2008.
    [143] MERAN A P, BAYKASOGLU C, MUGAN A, et al. Development of a design for a crash energy management system for use in a railway passenger car [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 230(1): 206–219. DOI: 10.1177/0954409714533321.
    [144] FANG Z W, WANG J R, LIU H T, et al. Design and analysis for a 4-stage crash energy management system for railway vehicles [C] // ICRVS 2018: International Conference on Railway Vehicles and Systems. Barcelona, Spain: International Journal of Transport and Vehicle Engineering, 2018.
    [145] LU G. Energy absorption requirement for crashworthy vehicles [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2002, 216(1): 31–39. DOI: 10.1243/0954409021531665.
    [146] 杨宝柱, 肖守讷, 杨超. 能量吸收方案对列车碰撞响应的影响 [J]. 城市轨道交通研究, 2018, 21(3): 48–51. DOI: 10.16037/j.1007-869x.2018.03.013.

    YANG B Z, XIAO S N, YANG C. Effect of energy absorbing schemes on train crash re-sponse [J]. Urban Mass Transit, 2018, 21(3): 48–51. DOI: 10.16037/j.1007-869x.2018.03.013.
    [147] XIE S C, ZHOU H. Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments [J]. Traffic Injury Prevention, 2014, 15(7): 740–747. DOI: 10.1080/15389588.2013.862590.
    [148] XIE S C, TIAN H Q. Dynamic simulation of railway vehicle occupants under secondary impact [J]. Vehicle System Dynamics, 2013, 51(12): 1803–1817. DOI: 10.1080/00423114.2013.834368.
    [149] VANINGEN-DUNN C. Commuter rail seat testing and analysis of facing seats: DOT/FRA/ORD-03/06 [R]. Washington: U. S. Department of Transportation Federal Railroad Administration, Office of Research and Development, 2003.
    [150] TYRELL D, ZOLOCK J, VANINGEN-DUNN C. Train-to-train impact test: occupant protection experiments [C] //Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition. New Orleans, USA: ASME, 2002. DOI: 10.1115/IMECE2002-39611.
    [151] TYRELL D C, SEVERSON K J, MARQUIS B P. Analysis of occupant protection strategies in train collisions [C] //Proceedings of the ASME International Mechanical Engineering Congress and Exposition. San Francisco, USA: ASME, 1995.
    [152] CARVALHO M, AMBROSIO J, MILHO J. Implications of the inline seating layout on the protection of occupants of railway coach interiors [J]. International Journal of Crashworthiness, 2011, 16(5): 557–568. DOI: 10.1080/13588265.2011.611399.
    [153] CARVALHO M, MARTINS A, MILHO J. Validation of a railway inline seating model for occupants injury biomechanics [J]. International journal of crashworthiness, 2018, 23(3): 328–335. DOI: 10.1080/13588265.2017.1328651.
    [154] CARVALHO M, MILHOJ, AMBROSIO J, et al. Railway occupant passive safety improvement by optimal design [J]. International Journal of Crashworthiness, 2017, 22(6): 624–634. DOI: 10.1080/13588265.2016.1221332.
    [155] 施青松, 刘艳文, 杨超, 等. 轨道卧铺客车乘员二次碰撞安全性研究 [J]. 机车车辆工艺, 2013(6): 6–8,10. DOI: 10.3969/j.issn.1007-6034.2013.06.003.

    SHI Q S, LIU Y W, YANG C, et al. Research of secondary crashworthiness for passengers in railway sleeping cars [J]. Locomotive & Rolling Stock Technology, 2013(6): 6–8,10. DOI: 10.3969/j.issn.1007-6034.2013.06.003.
    [156] 佟鑫, 张乐乐, 刘文, 等. 新型纵向卧铺结构被动安全性仿真分析与评估 [J]. 吉林大学学报(工学版), 2020, 50(1): 147–155. DOI: 10.13229/j.cnki.jdxbgxb20180942.

    TONG X, ZHANG L L, LIU W, et al. Simulation analysis and evaluation on passive safety of the longitudinal berth [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 147–155. DOI: 10.13229/j.cnki.jdxbgxb20180942.
    [157] OMINO K, SHIROTO H, SAITOH A, et al. Behavior analysis of passengers on bench seats in a train collision [J]. Quarterly Report of RTRI, 2008, 49(1): 47–52. DOI: 10.2219/rtriqr.49.47.
    [158] ROBERT T, BEILLAS P, MAUPAS A, et al. Conditions of possible head impacts for standing passengers in public transportation: an experimental study [J]. International Journal of Crashworthiness, 2007, 12(3): 319–327. DOI: 10.1080/13588260701433552.
    [159] HAULT-DUBRULLE A, ROBACHE F, DRAZETIC P, et al. Analysis of train driver protection in rail collisions: part I. evaluation of injury outcome for train driver in desk impact [J]. International Journal of Crashworthiness, 2013, 18(2): 183–193. DOI: 10.1080/13588265.2013.769484.
    [160] ZHOU H C, ZHAN J, WANG W B, et al. Dynamic simulation of train driver under secondary impact [J]. Advances in Mechanical Engineering, 2017, 9(12): 1–10. DOI: 10.1177/1687814017743111.
    [161] CAPUTO F, LAMANNA G, SOPRANO A. On the evaluation of the overloads coming from the use of seat-belts on a passenger railway seat [J]. International Journal of Mechanics and Materials in Design, 2012, 8(4): 335–348. DOI: 10.1007/s10999-012-9199-1.
    [162] CAPUTO F, FIDANZA F, LAMANNA G. Multibody investigation on the passive safety performances of seats in railway vehicles [C] // Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. Istanbul, Turkey: ASME, 2010. DOI: 10.1115/ESDA2010-24766.
    [163] PARENT D P, TYRELL D C, RANCATORE R, et al. Design of a workstation table with improved crashworthiness performance [C]//Proceedings of theASME 2005 International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2005. DOI: 10.1115/IMECE2005-82779.
    [164] SEVERSON K J, TYRELL D C, RANCATORE R. Crashworthiness requirements for commuter rail passenger seats [C]//Proceedings of theASME 2005 International Mechanical Engineering Congress and Exposition. Orlando, USA: ASME, 2005. DOI: 10.1115/IMECE2005-82643.
    [165] XIE S C, TIAN H Q. Influencing factors and sensitivity analysis of occupant impact injury in passenger compartment [J]. Traffic Injury Prevention, 2013, 14(8): 816–822. DOI: 10.1080/15389588.2013.768341.
    [166] WEI L, ZHANG L L. Evaluation and improvement of crashworthiness for high-speed train seats [J]. International Journal of Crashworthiness, 2018, 23(5): 561–568. DOI: 10.1080/13588265.2017.1367354.
    [167] PROCHOWSKI L, ŻUCHOWSKI A. Analysis of the influence of passenger position in a car on a risk of injuries during a car accident [J]. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 2014, 16(3): 360–366.
    [168] YANG W L, XIE S C, LI H H, et al. Design and injury analysis of the seated occupant protection posture in train collision [J]. Safety Science, 2019, 117: 263–275. DOI: 10.1016/j.ssci.2019.04.028.
    [169] CHEVALIER M C, MAUPAS A, LEVEQUE D, et al. Air-bag protection of the train driver during a collision [C] //Proceedings of the 2005 International IRCOBI Conference on the Biomechanics of Impact. Prague, Czechoslovakia: IRCOBI Conference, 2015.
    [170] HAULT-DUBRULLE A, ROBACHE F, DRAZETIC P, et al. Analysis of train driver protection in rail collisions: part II. design of a desk with improved crashworthiness performance [J]. International Journal of Crashworthiness, 2013, 18(2): 194–205. DOI: 10.1080/13588265.2013.769485.
    [171] ANGHILERI M, CASTELLETTI L M L, PIROLA M, et al. CIV class tram crashworthiness assessment [J]. International Journal of Crashworthiness, 2008, 13(4): 425–435. DOI: 10.1080/13588260802049372.
    [172] PENG Y, HOU L, YANG M Z, et al. Investigation of the train driver injuries and the optimization design of driver workspace during a collision [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(8): 902–915. DOI: 10.1177/0954409716647418.
    [173] ZOLOCK J D, TYRELL D C. Locomotive cab occupant protection [C] // Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition. Washington, USA: ASME, 2003. DOI: 10.1115/IMECE2003-55121.
  • 加载中
图(25) / 表(5)
计量
  • 文章访问数:  684
  • HTML全文浏览量:  632
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 修回日期:  2021-10-20
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2021-12-05

目录

    /

    返回文章
    返回