• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

12.7 mm弹侵彻不同强度钢靶的数值模拟

王凯雷 李明净 董雷霆

薛松波, 向书毅, 赵杨, 杜智博, 王兴皓, 李羿沣, 张家瑞, 费舟, 田旭, 高志强, 庄茁, 柳占立, 冯国栋. 基于自由场爆炸的小型猪内耳听觉损伤模型[J]. 爆炸与冲击, 2024, 44(12): 121432. doi: 10.11883/bzycj-2024-0256
引用本文: 王凯雷, 李明净, 董雷霆. 12.7 mm弹侵彻不同强度钢靶的数值模拟[J]. 爆炸与冲击, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336
XUE Songbo, XIANG Shuyi, ZHAO Yang, DU Zhibo, WANG Xinghao, LI Yifeng, ZHANG Jiarui, FEI Zhou, TIAN Xu, GAO Zhiqiang, ZHUANG Zhuo, LIU Zhanli, FENG Guodong. An auditory damage model for inner ears of miniature pigs based on free-field explosion[J]. Explosion And Shock Waves, 2024, 44(12): 121432. doi: 10.11883/bzycj-2024-0256
Citation: WANG Kailei, LI Mingjing, DONG Leiting. Simulation on penetration of a 12.7-mm projectile into steel targets with different strengths[J]. Explosion And Shock Waves, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336

12.7 mm弹侵彻不同强度钢靶的数值模拟

doi: 10.11883/bzycj-2021-0336
基金项目: 国家自然科学基金(12072011)
详细信息
    作者简介:

    王凯雷(1991- ),男,博士研究生,klwang@buaa.edu.cn

    通讯作者:

    董雷霆(1988- ),男,博士,教授,ltdong@buaa.edu.cn

  • 中图分类号: O347

Simulation on penetration of a 12.7-mm projectile into steel targets with different strengths

  • 摘要: 针对12.7 mm弹侵彻不同强度钢靶时可能出现子弹保持完整或发生破碎的情况,过去的数值模拟仅限于模拟单一模式的子弹侵彻行为。为了克服这种数值模拟的局限性,开展了模型算法、网格尺寸对模拟结果影响的研究,并将模拟结果与实验结果进行了对比,提出了一种能够用于模拟子弹保持完整或破碎的弹靶模型。研究结果表明,为模拟子弹保持完整状态,子弹和靶板应分别采用基于Lagrange算法的有限元法和光滑粒子算法,而且子弹网格尺寸和靶板粒子间距之比应至少保持在5.3左右,否则弹头会产生与实验结果不符合的异常变形。但是,在模拟子弹发生破碎侵蚀时,该比例的网格/粒子尺寸比会引起计算中止。为了克服该问题,进一步建立了一种弹体表面采用大尺寸网格、内部采用细化小尺寸网格的有限元/光滑粒子法耦合弹靶模型。计算结果表明,改进的弹靶模型可模拟子弹保持完整或者发生破碎的情况。
  • 随着现代军事科技的不断进步,爆炸性武器在战争中的广泛应用使得爆炸伤成为战争中最常见的伤害形式之一。据统计,爆炸性武器造成的伤害占战斗伤亡的50%~80%[1-2]。爆炸的特征是大气压瞬间升高,其能量的突然释放会产生一个大的压力锋或正超压,以超音速传播,也称为冲击波[3]。爆炸产生的冲击波对人体各个系统器官的影响广泛。听觉系统作为人体中最易受到爆炸冲击波影响的靶器官,常见的损伤包括鼓膜破裂、听骨链断裂、内耳损伤等,甚至可能导致永久性听力丧失[4-5]。通常认为,鼓膜对超压高度敏感,0.14~0.35 kg/cm2的冲击波会造成鼓膜穿孔,4~7 kg/cm2的冲击波会造成听骨链脱位或者断裂[6]。Niwa等[7]研究发现,冲击波可以直接导致外毛细胞静纤毛的损失。Cho等[8]进一步指出,高强度冲击波可能导致耳蜗基底膜的机械损伤。此外,谭君武等[9]研究发现,爆炸可引起耳蜗微循环流速的改变,影响耳蜗内环境的稳定和毛细胞能量,引起毛细胞的损失。这些研究结果共同表明,爆炸对听觉系统的损伤是多因素、多层次的。

    在爆炸伤防治研究中,直接的人类研究非常有限,动物模型成为重要的研究途径。现有的动物模型目前主要采用小鼠、大鼠、豚鼠和龙猫等啮齿动物研究听觉损伤[3, 10]。然而,这些小动物模型在模拟存在诸多局限性:小动物模型的耳蜗解剖结构与人类差异较大,不能准确反映爆炸对人类听觉系统的损伤;小动物模型无法承受较高的爆炸冲击波压力,无法模拟真实爆炸环境中产生的听觉损伤[11-12]。相比之下,猪作为一种大型哺乳动物,其耳蜗的形态、解剖结构与人类的高度相似,具有极高的实验应用价值。Dahlquist等[13]的研究表明,猪的耳蜗在出生时已基本发育成熟,并具备正常听力,其颞骨结构中的中耳、内耳、电生理等与人类的非常相似。此外,猪模型可以在更高强度的爆炸环境中生存,使其成为研究高强度爆炸对听觉系统影响的理想模型。

    基于以上背景,设计并建立一个模拟自由场爆炸环境的小型猪爆炸致伤平台,旨在探讨不同爆炸冲击波压力对小型猪内耳听觉系统的损伤作用,进一步为爆炸伤的机制研究和防护措施开发提供实验依据。

    本实验选用14头健康小型猪,均为雄性,质量约15 kg。实验前一天送至实验场地,并禁食水12 h。小型猪在爆炸前后均接受听性脑干反应(auditory brainstem response, ABR)测试,以评估听觉功能的变化。实验获得动物实验伦理委员会批准,伦理编号为IACUC20241384。

    麻醉采用2%戊巴比妥钠,质量为20 mg/kg,待小型猪角膜反射消失后,判定麻醉完成。在进行听力测试过程中保持深度麻醉,以避免对测试结果产生干扰。

    在隔音室内进行ABR测试。测试前用棉签清洁小型猪双侧外耳道,重复2~3次。记录电极安置于小型猪双耳廓上缘连线中点与颅顶交界处,参考电极插入测试耳侧耳垂,地极置于鼻尖,测量电极之间阻抗小于3 kΩ。测试使用短声(click)及不同频率短纯音(1、2、4和8 kHz)作为刺激声音,滤波宽度为300~3000 Hz,刺激频率为11 s−1,扫描时程为10 ms,叠加次数为512次,最大刺激声强度为90 dB,按20 dB递减,当出现无规律难以辨认的波形时,递增10 dB,将诱发出可重复规律波形的最低刺激强度记为ABR阈值。通过测量其ABR阈值的变化,评估爆炸对听觉功能的损害程度。

    本研究搭建了一个小型猪爆炸致伤平台,能够在自由场爆炸条件下实施爆炸实验。该平台由爆炸源、小型猪防护装置、测压系统等组成,确保实验环境能够模拟真实爆炸情景。爆炸源采用不同当量的TNT炸药,分别为1.9和8.0 kg,布置于离地面1.8 m的位置,模拟高能爆炸冲击波的作用(图1(a)~(b))。动物布放位置均头朝向爆心,与爆源同高,动物均处于浅麻醉状态。在防护装置方面,采用焊制3 mm厚的铁质框架将小型猪身体固定,并在缝隙处填充泡沫胶保证密封性,爆炸前后防护装置如图1(c)~(d)所示,仅露出头部,确保冲击波作用集中在头部的听觉系统,同时保护其胸腹部位不受损伤。这一设计确保了听觉系统的重点损伤评估,减少其他因素干扰实验结果。在不同距离(1.8~3.8 m)处布放小型猪,高精度压力传感器分别测试在不同距离下的冲击波峰值压力及正压持续时间。高精度压力传感器(型号PCB137B22/PCB137B23)能够准确测量爆炸冲击波的压力峰值及其持续时间。爆炸后复测ABR阈值,并统计即刻死亡率:爆炸后即刻记录每个布放距离下死亡和存活数量,计算每个布放距离即刻死亡率(死亡动物数/总动物数)。

    图  1  两次爆炸小型猪布置
    Figure  1.  Layouts of miniature pigs with two explosions

    测听后小型猪放置在解剖台上,麻醉状态下,以断颈放血的方式处死动物。沿颅顶正中线切开皮肤,线锯进行开颅,暴露双侧脑组织,去除脑组织及脑膜,可见双侧半头侧颅底区域不规则状骨块,底面积约1.0 cm×1.5 cm,使用弯头止血钳仔细撬出,迅速放入电镜固定液室温固定2 h,再转移至4 ℃保存。随后将固定好的样品经浓度为0.1M (0.1 mol/L)的磷酸缓冲液PB (PH值为7.4)漂洗3次,每次15 min。0.1M磷酸缓冲液PB (PH7.4)配制1%锇酸室温避光固定1~2 h。0.1M磷酸缓冲液PB(PH7.4)漂洗3次,每次15 min。将组织依次放入30%、50%、70%、80%、90%、95%、100%和100%的酒精每次15 min,乙酸异戊酯15 min。将样本放入临界点干燥仪内进行干燥。样本紧贴于导电碳膜双面胶上放入离子溅射仪样品台上进行喷金30 s左右,利用扫描电子显微镜观察采图。通过电镜观察耳蜗毛细胞的损伤情况,特别是外毛细胞和内毛细胞的损伤程度,并分析耳蜗基底膜的裂痕和细胞排列结构变化。

    采用SPSS 24.0软件对实验数据进行统计分析,采用配对样本t检验分析爆炸前后小型猪各频率的ABR阈值变化。对比爆炸前后的听力阈值,分析不同的TNT载荷和爆炸距离对小型猪听觉功能的影响。

    在爆炸冲击波作用范围内1.8~3.8 m处,实验测得峰值压力为96.3~628.3 kPa,冲击波持续时间为1.30~4.26 ms。实验数据表明,随着到爆心的距离增大,冲击波的峰值压力逐渐减小,同时正压持续时间有所延长,这一现象符合爆炸冲击波的衰减规律(表1)。

    表  1  TNT 冲击波峰值压力测试及小型猪致死率
    Table  1.  Results of TNT shock wave overpressure test and mortality of miniature pigs
    爆炸当量/kg 到爆心距离/m 峰值压力/kPa 正压持续时间/ms 小型猪即刻死亡率/%
    1.9 1.8 511.6 1.40 0(0/2)
    2.6 170.0 2.80 0(0/2)
    3.2 96.3 4.65 0(0/2)
    8.0 2.6 628.3 1.30 50(1/2)
    2.9 528.7 2.11 0(0/2)
    3.2 378.5 2.98 0(0/2)
    3.8 237.0 4.26 0(0/2)
    下载: 导出CSV 
    | 显示表格

    在第1发爆炸实验中,所有小型猪均存活。在第2发实验中,8.0 kg TNT爆炸后,距离爆心2.6 m处的峰值压力为628.3 kPa,导致1头小型猪死亡,死亡率为50%。而距离爆心2.9 m处的峰值压力为528.7 kPa,小型猪均存活。这提示峰值压力超过600 kPa可能会导致小型猪死亡。

    在短声(click)和短纯音(2、4和8 kHz)诱发条件下,爆炸前后的ABR声压级阈值均具有显著性差异,如表2所示。结果显示在4 kHz时阈值变化最显著,证实爆炸冲击波对小型猪听觉系统的损伤在4 kHz时表现最明显(图2)。

    表  2  小型猪爆炸前后ABR声压级阈值的比较
    Table  2.  Comparison of ABR sound pressure level (SPL) thresholds before and after explosion of miniature pigs
    组别ABR SPL threshold/dB
    Click2 kHz4 kHz8 kHz
    爆炸前52.00±8.3746.00±5.4854.00±11.4042.00±13.04
    爆炸后90.00±17.3284.00±8.94112.00±10.9590.00±10.00
    P0.0270.0010.0000.004
    下载: 导出CSV 
    | 显示表格
    图  2  小型猪爆炸前后ABR阈值的统计分析
    Figure  2.  Statistical analysis of ABR threshold before and after explosion of miniature pigs

    在不同爆炸条件下,耳蜗的损伤程度呈现显著变化(图3)。随着自由场压力的增大,耳蜗螺旋器受损加重。内毛细胞(inner hair cells, IHCs)的纤毛数量逐渐减少,出现退化,甚至完全消失,损伤程度明显高于外毛细胞(outer hair cells, OHCs)。外毛细胞的纤毛V形结构部分消失分布不均匀,且基底膜出现裂痕。总体而言,内毛细胞对爆炸冲击更敏感,其损伤随着自由场压力的提高而显著加重,这可能是引起听力损伤的主要原因。

    图  3  不同爆炸条件下耳蜗损伤情况
    Figure  3.  Cochlear injury under different explosion conditions

    成功建立了小型猪爆炸内耳听觉损伤模型,从听觉功能和形态学两个方面评估了爆炸冲击波对内耳听觉系统的影响。研究结果显示,爆炸冲击波显著提高小型猪的ABR阈值,尤其在4  kHz频率时变化最明显;扫描电镜观察显示,内毛细胞损伤程度高于外毛细胞,且损伤随冲击波压力的升高而加重。这些发现为深入理解爆炸性听觉损伤的机制提供了重要依据。

    小型猪作为爆炸引起内耳听觉损伤的动物模型,主要基于其在解剖和生理特性上与人类的高度相似性[14]。首先,小型猪的耳蜗形态和大小与人类几乎一致,这使得研究结果更具临床相关性。相比之下,其他啮齿类动物的耳蜗结构与人类存在显著差异,限制了结果的外推应用。其次,小型猪的内耳在出生时已基本发育成熟,具备正常的听觉功能,这与人类的听觉发育过程相似。此外,小型猪作为大型哺乳动物,能够耐受真实爆炸条件下产生的高强度冲击波,而不至于立即死亡,这为评估爆炸对听觉系统的直接影响提供了可能[15]。虽然小型猪的外耳道比人类更弯曲,可能对冲击波有一定的缓冲作用,但本研究结果显示,其听觉系统仍然受到明显损伤,证明了该模型的适用性。因此,选择小型猪作为爆炸伤动物模型,不仅提高了研究结果的可靠性和可转化性,还为深入探索爆炸冲击波对听觉系统的损伤机制提供了理想的平台。

    爆炸性武器所产生的冲击波是产生生物损毁的重要因素,其毁伤效果主要取决于两个物理参数:冲击波峰值压力和正压作用时间[16]。本研究设计了2次不同载荷真实环境爆炸伤和不同距离的爆炸伤,随着距离增加,冲击波峰值压力减小,符合冲击波衰减规律[17]。当峰值压力超过600 kPa时,小型猪出现即刻死亡,提示高压冲击波对生物体具有致命性。内耳听觉系统损伤程度与冲击波压力呈正相关关系,提示在爆炸伤防护中,应重点关注高压冲击波对听觉系统的保护。

    爆炸冲击波导致小型猪的ABR阈值显著升高,尤其在4 kHz频率下变化最明显。这一结果与人类和其他动物模型的研究一致,表明爆炸冲击波对听觉系统的损伤具有普遍性。人类暴露于爆炸冲击波后,患者常出现高频听力下降和ABR阈值升高[18]。在动物模型中,龙猫和小鼠在暴露于高强度噪声后,导致ABR阈值持久升高,且在4~8 kHz较明显,常伴随耳蜗毛细胞的丢失和突触连接的破坏[19-20]。爆炸冲击波对4 kHz频率的损伤尤为显著,因为耳蜗在该频段具有较高敏感性[21]。此外,可能由于4 kHz位于耳蜗基底转,声波在耳蜗内传播时易产生共振,导致局部能量集中,造成细胞损伤。

    爆炸冲击波对耳蜗的内毛细胞和外毛细胞均可造成损伤,然而广泛的外毛细胞丢失是爆炸诱发的声损伤的特征性发现[22-23]。而本研究发现,爆炸冲击波的高压峰值直接损伤内毛细胞的纤毛结构,导致纤毛断裂、融合或消失。而爆炸冲击波导致外毛细胞的纤毛排列紊乱,V形结构消失,外毛细胞最外结构较内排更易缺失。相比内毛细胞,外毛细胞对爆炸冲击波的抵抗力稍强。爆炸冲击波可导致小型猪内毛细胞和外毛细胞均损伤,但内毛细胞更易受损。损伤机制涉及机械性损伤[24]、氧化应激[25]、兴奋性毒性、炎症反应和血流障碍等多种因素。深入研究这些机制,将有助于开发新的防护和治疗方法,减轻爆炸伤对听觉系统的影响。

    本研究存在以下局限:首先,ABR测试耗时较长,未进行全频率的听觉功能评估,未来将结合其他检测方法进行测试。其次,爆炸参数仅限于1.9和8 kg TNT当量,样本数量较少,未涵盖其他类型和当量的爆炸物,结果的适用性有限。此外,未考虑长期效应,缺乏对长期暴露于爆炸环境中的累积影响研究,未来应进行长期观察。

    该小型猪爆炸损伤模型具有广泛的应用前景。首先,它为深入研究爆炸冲击波对听觉系统的损伤机制提供了理想平台,可用于探讨不同爆炸条件下听觉损伤的累积效应,有助于揭示听觉系统对爆炸冲击波的长期适应和损伤机制[26]。其次,该模型可用于听力保护装置的开发与评估,尤其是在高强度爆炸环境中[27]。利用本研究的实验平台,可测试和优化各种听力保护设备的设计,为军事和工业领域提供有效的防护措施。此外,该模型还可支持爆炸性听觉损伤的医学干预和康复治疗研究,如药物治疗和听力植入设备等,为改善爆炸伤患者的生活质量提供新的科学依据和治疗策略。

    通过构建小型猪爆炸致伤平台,采用不同当量的TNT炸药,在自由场条件下对小型猪进行了爆炸冲击波损伤实验,多维度评估了爆炸对听觉系统的影响,得到的结论如下。

    (1)爆炸冲击波显著损伤小型猪的听觉功能。爆炸后,所有频率下的听性脑干反应阈值均显著升高,尤其在4 kHz频率时,阈值变化最明显。这表明爆炸对听觉系统的损伤具有频率依赖性,4 kHz可能是受损最敏感的频率。

    (2)耳蜗损伤程度与爆炸压力密切相关。随着爆炸峰值压力的增大,耳蜗受损加重,基底膜出现裂痕,细胞排列结构发生变化。

    (3)内毛细胞对爆炸冲击波可能更为敏感。扫描电子显微镜观察显示,内毛细胞的纤毛数量减少,排列紊乱甚至消失,损伤程度明显高于外毛细胞。内毛细胞的严重损伤可能是引起听力损伤的主要原因,这强调了其在听觉系统中的关键作用。

    (4)小型猪内耳听觉爆炸伤模型模实用性和推广性。在不同实验中,使用相同的爆炸参数对小型猪进行测试,观察到一致的听力损伤结果,表明建立的小型猪听觉爆炸伤模型具有较好的重复性和稳定性,可以作为评估听力损伤和防护措施效果的有效工具,适用于更广泛的爆炸伤害研究。

  • 图  1  弹、靶实物

    Figure  1.  The projectile and target

    图  2  数值模型

    Figure  2.  The numerical model

    图  3  603钢参数拟合

    Figure  3.  Parameter fitting of 603 steel

    图  4  12.7 mm穿甲弹侵彻半无限厚603钢板实验与模拟结果对比

    Figure  4.  Comparison between experiment and numerical simulation of 12.7-mm projectiles penetrating semi-infinite 603 steel targets

    图  5  子弹材料与603钢和超高强钢的应力-应变曲线对比

    Figure  5.  Comparison of stress-strain curves of projectile material with those of 603 steel and ultra-high strength steel

    图  6  不同金属材料的1+Cln(˙ε/˙ε0)C的关系[18]

    Figure  6.  Relations of 1+Cln(˙ε/˙ε0) and C for different metals[18]

    图  7  采用不同算法建立的靶板模型

    Figure  7.  The target models with different algorithms

    图  8  弹靶网格相互穿透

    Figure  8.  Penetration of the projectile and target grids into each other

    图  9  不同失效应变下,FEM靶板模型与SPH/FEM靶板模型计算得到的侵彻深度的对比

    Figure  9.  Comparison of penetration depths obtained by the FEM target model and the SPH/FEM target model at different given failure strains

    图  10  采用不同算法建立的子弹模型

    Figure  10.  The projectile models with different algorithms

    图  11  不同弹靶模型的计算结果

    Figure  11.  Numerical results obtained by different projectile-target models

    图  12  不同弹靶模型的侵彻过程

    Figure  12.  The penetration processes obtained by different projectile-target models

    图  13  模型1弹头局部放大

    Figure  13.  Partial amplification of the projectile nose for model 1

    图  14  不同的子弹FEM网格尺寸和靶板SPH粒子间距组合下的计算结果

    Figure  14.  Numerical results for different combinations of projectile FEM mesh size and target SPH particle spacing

    图  15  粗糙网格子弹对超高强钢靶的侵彻过程

    Figure  15.  Penetration process of the projectile with coarse mesh into the ultra-high strength steel target

    图  16  细化网格子弹对超高强钢靶的侵彻过程

    Figure  16.  Penetration process of the projectile with refined mesh into the ultra-high strength steel target

    图  17  模拟结果与相关实验结果的对比

    Figure  17.  Comparison between the simulation and the related experimental results

    图  18  改进网格形式的三维子弹模型的改进网格形式

    Figure  18.  The improved mesh forms of the three-dimensional projectile model

    图  19  改进网格模型的弹靶侵彻过程模拟结果

    Figure  19.  Projectile-into-target penetration processes simulated by the improved mesh model

    图  20  子弹内部单元和外部单元的等效塑性应变时间历程

    Figure  20.  Effective plastic strain-time curves of the inside and outside elements of the projectiles

    表  1  12.7 mm穿甲弹弹芯和靶板的材料参数

    Table  1.   The material parameters for the 12.7-mm-diameter armor-piercing projectiles and targets

    材料A/MPaB/MPanCm˙ε0/s−1
    弹芯[6]158029050.1170.00751.171
    603钢105012750.4220.05211842
    超高强钢[5]2850500010.0512000
    下载: 导出CSV

    表  2  本文与文献[8]的弹靶比较

    Table  2.   Comparison of the projectile and target used in this study with those used in Reference [8]

    来源曲率半径/mm弹径/mm弹长/mm子弹质量/g子弹材料靶板材料
    文献[8]37.8612.647.735硬38CrSiGY4装甲钢
    本文36.810.851.628硬质合金钢超高强钢
    下载: 导出CSV
  • [1] DEY S, BØRVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: an experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701–6723. DOI: 10.1016/j.ijsolstr.2007.03.005.
    [2] FLORES-JOHNSON E A, SALEH M, EDWARDS L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile [J]. International Journal of Impact Engineering, 2011, 38(12): 1022–1032. DOI: 10.1016/j.ijimpeng.2011.08.005.
    [3] GAO G H, ZHANG H, GUI X L, et al. Enhanced ductility and toughness in an ultrahigh-strength Mn–Si–Cr–C steel: the great potential of ultrafine filmy retained austenite [J]. Acta Materialia, 2014, 76: 425–433. DOI: 10.1016/j.actamat.2014.05.055.
    [4] CHANG Z Y, LI Y J, WU D. Enhanced ductility and toughness in 2000 MPa grade press hardening steels by auto-tempering [J]. Materials Science and Engineering: A, 2020, 784: 139342. DOI: 10.1016/j.msea.2020.139342.
    [5] SOURMAIL T, CABALLERO F G, GARCIA-MATEO C, et al. Evaluation of potential of high Si high C steel nanostructured bainite for wear and fatigue applications [J]. Materials Science and Technology, 2013, 29(10): 1166–1173. DOI: 10.1179/1743284713Y.0000000242.
    [6] FRAS T, MURZYN A, PAWLOWSKI P. Defeat mechanisms provided by slotted add-on bainitic plates against small-calibre 7.62mm×51 AP projectiles [J]. International Journal of Impact Engineering, 2017, 103: 241–253. DOI: 10.1016/j.ijimpeng.2017.01.015.
    [7] KILIC N, BEDIR S, ERDIK A, et al. Ballistic behavior of high hardness perforated armor plates against 7.62-mm armor piercing projectile [J]. Materials and Design, 2014, 63: 427–438. DOI: 10.1016/j.matdes.2014.06.030.
    [8] 魏刚. 金属动能弹变形与断裂特性及其机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014: 142–146. DOI: 10.7666/d.D593970.

    WEI Gang. Investigation of deformation and fracture behavior associated mechanisms of the metal kinetic energy projeciles [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2014: 142–146. DOI: 10.7666/d.D593970.
    [9] 赵太勇, 王维占, 赵军强, 等. 12.7 mm动能弹侵彻装甲钢板的结构响应特性研究 [J]. 兵器装备工程学报, 2020, 41(10): 146–149. DOI: 10.11809/bqzbgcxb2020.10.026.

    ZHAO T Y, WANG W Z, ZHAO J Q, et al. Study on structural response characteristics of 12.7 mm kinetic energy projectile penetrating armor plate [J]. Journal of Ordnance Equipment Engineering, 2020, 41(10): 146–149. DOI: 10.11809/bqzbgcxb2020.10.026.
    [10] CHEN X W, CHEN G, ZHANG F J. Deformation and failure modes of soft steel projectiles impacting harder steel targets at increasing velocity [J]. Experimental Mechanics, 2008, 48(3): 335–354. DOI: 10.1007/s11340-007-9110-4.
    [11] 陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.

    CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting onto 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
    [12] CHEN X W, ZHANG F J, LIANG B, et al. Three modes of penetration mechanisms of A3 steel cylindrical projectiles impact onto 45 steel plates [J]. Key Engineering Materials, 2007, 340/341: 295–300. DOI: 10.4028/www.scientific.net/KEM.340-341.295.
    [13] PARIS V, WEISS A, VIZEL A, et al. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates [C]//EPJ Web of Conferences, 2012, 26: 04032. DOI: 10.1051/epjconf/20122604032.
    [14] 石益建, 杜忠华, 高光发, 等. 异形B4C/Al复合靶板抗侵彻数值模拟分析 [J]. 弹箭与制导学报, 2020, 40(2): 67–71. DOI: 10.15892/j.cnki.djzdxb.2020.02.017.

    SHI Y J, DU Z H, GAO G F, et al. Numerical simulation and analysis of abnormal B4C/Al composite target [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(2): 67–71. DOI: 10.15892/j.cnki.djzdxb.2020.02.017.
    [15] WOODWARD R L, O'DONNELL R G, FLOCKHART C J. Failure mechanisms in impacting penetrators [J]. Journal of Materials Science, 1992, 27(23): 6411–6416. DOI: 10.1007/BF00576292.
    [16] 谢恒, 吕振华. 钢芯弹冲击高强度钢过程的数值模拟分析 [J]. 高压物理学报, 2012, 26(3): 259–265. DOI: 10.11858/gywlxb.2012.03.003.

    XIE H, LÜ Z H. Perforation simulations of high-strength steel by steel core bullets [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 259–265. DOI: 10.11858/gywlxb.2012.03.003.
    [17] BØRVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. DOI: 10.1016/j.ijimpeng.2008.12.003.
    [18] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548.
    [19] IQBAL M A, SENTHIL K, MADHU V, et al. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles [J]. International Journal of Impact Engineering, 2017, 110: 26–38. DOI: 10.1016/j.ijimpeng.2017.04.011.
    [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [21] XIAO X K, ZHANG W, WEI G, et al. Experimental and numerical investigation on the deformation and failure behavior in the Taylor test [J]. Materials and Design, 2011, 32(5): 2663–2674. DOI: 10.1016/j.matdes.2011.01.016.
  • 加载中
推荐阅读
基于简易冲击分解模型的爆轰驱动硅橡胶数值模拟及实验解读
刘军 等, 爆炸与冲击, 2025
远场冲击波下螺旋桨毁伤与空化特征研究
王志凯 等, 爆炸与冲击, 2025
舱室内爆下舰船结构损伤的一种计算方法
伍星星 等, 爆炸与冲击, 2024
基于自由场爆炸的猪鼓膜破裂规律实验研究
向书毅 等, 爆炸与冲击, 2024
Nf-κb/inos信号通路在感音神经性听力损失小鼠模型中对螺旋神经节的影响
陈凯 等, 四川大学学报(医学版), 2022
水下噪音对杂交鲟行为及肠道微生物的影响
高跃 等, 水生生物学报, 2023
听力受损风险评估模型的建立与评价研究
李超 等, 中国全科医学, 2022
Xylodon asiaticus (hymenochaetales, basidiomycota), a new species of corticioid fungus from southern china
Zhang, Xunchi et al., PHYTOTAXA, 2024
Protective effect of alpha-linolenic acid on cisplatin induced ototoxicity in mice
INTERNATIONAL JOURNAL OF PHARMACOLOGY, 2023
Size distribution characteristics of blast-induced rock fragmentation under decoupled charge structures
MA Sizhou et al., EXPLOSION AND SHOCK WAVES, 2024
Powered by
图(20) / 表(2)
计量
  • 文章访问数:  792
  • HTML全文浏览量:  280
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 修回日期:  2022-03-24
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-09-09

目录

/

返回文章
返回