中低速压缩加载下不同截面构型复合材料薄壁结构吸能特性及失效分析

张欣玥 惠旭龙 葛宇静 舒挽 白春玉 刘小川

张欣玥, 惠旭龙, 葛宇静, 舒挽, 白春玉, 刘小川. 中低速压缩加载下不同截面构型复合材料薄壁结构吸能特性及失效分析[J]. 爆炸与冲击, 2022, 42(6): 063102. doi: 10.11883/bzycj-2021-0347
引用本文: 张欣玥, 惠旭龙, 葛宇静, 舒挽, 白春玉, 刘小川. 中低速压缩加载下不同截面构型复合材料薄壁结构吸能特性及失效分析[J]. 爆炸与冲击, 2022, 42(6): 063102. doi: 10.11883/bzycj-2021-0347
ZHANG Xinyue, HUI Xulong, GE Yujing, SHU Wan, BAI Chunyu, LIU Xiaochuan. Energy absorption characteristics and failure analysis of composite thin-walled structures with different cross-sectional configurations under medium- and low-speed compression loading[J]. Explosion And Shock Waves, 2022, 42(6): 063102. doi: 10.11883/bzycj-2021-0347
Citation: ZHANG Xinyue, HUI Xulong, GE Yujing, SHU Wan, BAI Chunyu, LIU Xiaochuan. Energy absorption characteristics and failure analysis of composite thin-walled structures with different cross-sectional configurations under medium- and low-speed compression loading[J]. Explosion And Shock Waves, 2022, 42(6): 063102. doi: 10.11883/bzycj-2021-0347

中低速压缩加载下不同截面构型复合材料薄壁结构吸能特性及失效分析

doi: 10.11883/bzycj-2021-0347
基金项目: 民机专项科研(MJ-2017-F-15)
详细信息
    作者简介:

    张欣玥(1994- ),女,硕士,工程师,nwpuzhangxinyue@163.com

    通讯作者:

    刘小川(1983- ),男,博士,研究员,asri02@163.com

  • 中图分类号: O347

Energy absorption characteristics and failure analysis of composite thin-walled structures with different cross-sectional configurations under medium- and low-speed compression loading

  • 摘要: 为研究开剖面复合材料薄壁吸能结构的吸能特性,基于高速液压伺服试验系统,开展了开剖面复合材料薄壁结构轴向压缩试验,分析了截面构型、截面长宽比、触发模式及加载速度对其吸能特性的影响,揭示了其在压溃过程中的失效及吸能机理。研究结果表明,复合材料薄壁结构压溃过程中主要通过材料弯曲、分层、剪切破坏以及压溃区之间的摩擦吸能。截面构型对其吸能特性影响显著,其中,帽形及Ω形试件的平均压溃载荷较C形试件分别高出14.1%和14.6%,比吸能较C形试件分别高出14.3%和14.8%;截面长宽比对复合材料薄壁结构吸能特性的影响不如截面构型明显;触发模式主要影响吸能结构的初始压溃阶段,在降低峰值载荷方面,C形试件采用45°倒角触发效果更好,帽形试件采用15°尖顶触发效果更好;当加载速度从0.01 m/s提高到1 m/s时,C形、帽形及Ω形试件的平均压溃载荷分别下降了6.1%、10.9%和6.1%,比吸能分别下降了6.2%、11.0%和6.2%。
  • 图  1  试件横截面尺寸(单位:mm)

    Figure  1.  Cross-sectional dimensions of specimens (unit: mm)

    图  2  试件照片

    Figure  2.  Photos of the specimens

    图  3  高速液压伺服试验机

    Figure  3.  High speed hydraulic servo testing machine

    图  4  试件夹持方式

    Figure  4.  Clamping method of the specimens

    图  5  典型复合材料吸能试件渐进压溃载荷-位移曲线

    Figure  5.  Typical progressive crushing load-displacement curve of composite energy-absorbing specimens

    图  6  不同截面构型试件压溃过程中的典型载荷-位移曲线

    Figure  6.  Typical force-displacement curves of the specimenswith different cross-section shapes

    图  7  不同截面构型试件吸能特性对比

    Figure  7.  Comparison of energy-absorption characteristics of the specimens with different cross-section shapes

    图  8  不同截面构型试件加载过程中的破坏情况(加载速度1 m/s)

    Figure  8.  Failure modes of the specimens with different cross-section shapes during loading (loading speed: 1 m/s)

    图  9  加载速度为1 m/s时不同截面构型试件的破坏形貌

    Figure  9.  Failure morphology of the specimens with different cross-section configurations under loading speed of 1 m/s

    图  10  不同截面长宽比试件压溃过程中的典型载荷-位移曲线

    Figure  10.  Typical force-displacement curves of the specimens with different section aspect ratios

    图  11  不同长宽比试件吸能特性对比

    Figure  11.  Comparison of energy-absorption characteristics of the specimens with different section aspect ratios

    图  12  不同截面构型试件破坏形貌

    Figure  12.  Failure morphology of the specimens with different cross-section shapes

    图  13  不同触发模式试件典型载荷-位移曲线

    Figure  13.  Typical force-displacement curves of the specimens with different trigger methods

    图  14  不同触发模式试件吸能特性对比

    Figure  14.  Comparison of energy-absorption characteristics of the specimens with different trigger methods

    图  15  尖顶触发试件加载过程中破坏情况

    Figure  15.  Failure modes of the specimens with steeple trigger method

    图  16  不同加载速度下的典型载荷-位移曲线

    Figure  16.  Typical force-displacement curves of the specimens with different loading speeds

    图  17  不同加载速度的试件吸能特性对比

    Figure  17.  Comparison of energy-absorption characteristics of the specimens with different loading speeds

    图  18  不同构型试件比吸能随加载速度变化情况

    Figure  18.  Variation of specific energy absorption of the specimensof different section shapes with loading speed

    图  19  不同截面构型试件加载过程中破坏情况(加载速度0.01 m/s)

    Figure  19.  Failure modes of the specimens of different cross-section shapes during loading (loading speed: 0.01 m/s)

    图  20  加载速度为0.01 m/s时不同截面构型试件破坏形貌

    Figure  20.  Morphology of the specimens of different section shapes under loading speed of 0.01 m/s

    表  1  复合材料薄壁吸能结构压溃试验

    Table  1.   Composite thin-walled structures compression test matrix

    试件构型触发方式加载速度/(m∙s−1压缩行程内质量/g试验组数
    C1型倒角触发114.6803
    帽形倒角触发114.6783
    Ω形倒角触发114.6773
    C2型倒角触发114.6803
    C3型倒角触发114.6803
    C1型尖顶触发113.5073
    帽形尖顶触发114.0293
    C1型倒角触发0.0114.6803
    C1型倒角触发0.114.6803
    帽形倒角触发0.0114.6783
    帽形倒角触发0.114.6783
    Ω形倒角触发0.0114.6773
    Ω形倒角触发0.114.6773
    下载: 导出CSV
  • [1] REN Y R, JIANG H Y, JI W Y, et al. Improvement of progressive damage model to predicting crashworthy composite corrugated plate [J]. Applied Composite Materials, 2017, 25(1): 45–66. DOI: 10.1007/s10443-017-9610-z.
    [2] 刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究 [J]. 航空学报, 2012, 33(12): 2202–2210.

    LIU X C, ZHOU S F, MA J F, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2202–2210.
    [3] 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析 [J]. 航空学报, 2019, 40(2): 522394. DOI: 10.7527/S1000-6893.2018.22394.

    FENG Z Y, XIE J, LI H H, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522394. DOI: 10.7527/S1000-6893.2018.22394.
    [4] 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性 [J]. 航空学报, 2019, 40(9): 222907. DOI: 10.7527/S1000-6893.2019.22907.

    FENG Z Y, CHENG K, ZHAO Y F, et al. Energy-absorbing charateristics of a typical sub-cargo fuselage section of a transport category aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 222907. DOI: 10.7527/S1000-6893.2019.22907.
    [5] 李松晏, 郑志军, 虞吉林. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35: 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.

    LI S Y, ZHENG Z J, YU J L. Energy-absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35: 164–170. DOI: 10.11883/1001-1455(2015)02-0164-07.
    [6] SUBBARAMAIAH R, PRUSTY B G, PEARCE G M K, et al. Crashworthy response of fibre metal laminate top hat structures [J]. Composite Structures, 2017, 160: 773–781. DOI: 10.1016/j.compstruct.2016.10.112.
    [7] JIANG H Y, REN Y R, GAO B H, et al. Design of novel plug-type triggers for composite square tubes: enhancement of energy-absorption capacity and inducing failure mechanisms [J]. International Journal of Mechanical Sciences, 2017, 131: 113–136. DOI: 10.1016/j.ijmecsci.2017.06.050.
    [8] REN Y R, ZHANG H Y, XIANG J W. A novel aircraft energy absorption strut system with corrugated composite plate to improve crashworthiness [J]. International Journal of Crashworthiness, 2018, 23(1): 1–10. DOI: 10.1080/13588265.2017.1301082.
    [9] 冯振宇, 周坤, 裴惠, 等. 复合材料薄壁方管准静态轴向压缩失效机理及吸能特性 [J]. 高分子材料科学与工程, 2019, 35(8): 94–104. DOI: 10.16865/j.cnki.1000-7555.2019.0220.

    FENG Z Y, ZHOU K, PEI H, et al. Failure mechanism and energy-absorption characteristics of composite thin-walled square tube under quasi-static axial compression load [J]. Polymer Materials Science and Engineering, 2019, 35(8): 94–104. DOI: 10.16865/j.cnki.1000-7555.2019.0220.
    [10] 解江, 马骢瑶, 霍雨佳, 等. 纤维铺层角度对复合材料薄壁圆管轴向压溃吸能特性影响研究 [J]. 振动与冲击, 2018, 37(20): 205–211. DOI: 10.13465/j.cnki.jvs.2018.20.031.

    XIE J, MA C Y, HUO Y J, et al. Effect of ply orientations on energy-absorbing characteristics of composite thin-walled circular tubes under axial compression [J]. Journal of Vibration and Shock, 2018, 37(20): 205–211. DOI: 10.13465/j.cnki.jvs.2018.20.031.
    [11] JIANG H Y, REN Y R, GAO B H. Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness [J]. Thin-Walled Structures, 2017, 119: 531–543. DOI: 10.1016/j.tws.2017.07.004.
    [12] KIM J S, YOON H J, SHIN K B. A study on crushing behaviors of composite circular tubes with different reinforcing fibers [J]. International Journal of Impact Engineering, 2011, 38(4): 198–207. DOI: 10.1016/j.ijimpeng.2010.11.007.
    [13] KAKOGIANNIS D, YUEN S C K, PALANIVELU S, et al. Response of pultruded composite tubes subjected to dynamic and impulsive axial loading [J]. Composites Part B: Engineering, 2013, 55: 537–547. DOI: 10.1016/j.compositesb.2013.07.022.
    [14] 黄建城, 王鑫伟, 卞航. SMA薄弱环节对复合材料圆管耐撞性影响的试验研究 [J]. 工程力学, 2011, 28(10): 222–227.

    HUANG J C, WANG X W, BIAN H. Effect of SMA trigger on the crashworthiness of composite tubes [J]. Engineering Mechanics, 2011, 28(10): 222–227.
    [15] 王振, 宋凯, 朱国华, 等. 单向碳纤维复合材料锥管轴向吸能特性研究 [J]. 振动与冲击, 2018, 37(7): 172–178.

    WANG Z, SONG K, ZHU G H, et al. Axial energy absorption characteristics of unidirectional carbon-fiber composite cone tubes [J]. Journal of Vibration and Shock, 2018, 37(7): 172–178.
    [16] 邓亚斌, 任毅如, 蒋宏勇. 复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为 [J]. 复合材料学报, 2022, 39(4): 1796–1804.

    DENG Y B, REN Y R, JIANG H Y. Oblique crushing failure behaviors of composite energy-absorbing circu-lar tube under the semi-circular cavity triggering mechanism [J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1796–1804.
    [17] 谭丽辉, 徐涛, 崔晓梅, 等. 带有圆弧形凹槽金属薄壁圆管抗撞性优化设计 [J]. 爆炸与冲击, 2014, 34(5): 547–553. DOI: 10.11883/1001-1455(2014)05-0547-07.

    TAN L H, XU T, CUI X M, et al. Design optimization for crashworthiness of metal thin-walled cylinders with circular arc indentations [J]. Explosion and Shock Waves, 2014, 34(5): 547–553. DOI: 10.11883/1001-1455(2014)05-0547-07.
    [18] 殷之平, 李玉龙, 黄其青. 含诱导缺陷薄壁圆管耐撞性优化设计 [J]. 爆炸与冲击, 2011, 31(4): 418–422. DOI: 10.11883/1001-1455(2011)04-0418-05.

    YIN Z P, LI Y L, HUANG Q Q. Optimal crashworthiness design of thin-walled circular tubes with triggering holes [J]. Explosion and Shock Waves, 2011, 31(4): 418–422. DOI: 10.11883/1001-1455(2011)04-0418-05.
    [19] 黄建城. 含薄弱环节复合材料圆管轴向吸能特性研究 [D]. 南京: 南京航空航天大学, 2011: 46–96.

    HUANG J C. On the axial energy absorption behaviour of composite tubes with crush triggers [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 46–96.
    [20] DEEPAK S. Crashworthy design and analysis of aircraft structures [D]. Philadelphia: Drexel University, 2013: 87–227.
    [21] 蒋宏勇. 复合材料薄壁结构的损伤耦合破坏模型及其吸能机理的研究 [D]. 长沙: 湖南大学, 2017: 33–36.

    JIANG H Y. Research on the damage coupling destruction model and energy-absorbing mechanism of composite thin-walled structure [D]. Changsha: Hunan University, 2017: 33–36.
    [22] ZHAO X, ZHU G H, ZHOU C Y, et al. Crashworthiness analysis and design of composite tapered tubes under multiple load cases [J]. Composite Structures, 2019, 222: 110920. DOI: 10.1016/j.compstruct.2019.110920.
    [23] 郝文乾, 卢进帅, 黄睿, 等. 轴向冲击载荷下薄壁折纹管的屈曲模态与吸能 [J]. 爆炸与冲击, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.

    HAO W Q, LU J S, HUANG R, et al. Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting [J]. Explosion and Shock Waves, 2015, 35(3): 380–385. DOI: 10.11883/1001-1455-(2015)03-0380-06.
    [24] 解江, 张雪晗, 宋山山, 等. CFRP薄壁C型柱轴向压缩破坏机制及吸能特性 [J]. 复合材料学报, 2018, 35(12): 3261–3270. DOI: 10.13801/j.cnki.fhclxb.20180319.002.

    XIE J, ZHANG X H, SONG S S, et al. Failure mechanism and energy-absorbing characteristics of CFRP thin-walled C-channels subject to axial compression [J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3261–3270. DOI: 10.13801/j.cnki.fhclxb.20180319.002.
    [25] JIANG H Y, REN Y R. Crashworthiness and failure analysis of steeple-triggered hat-shaped composite structure under the axial and oblique crushing load [J]. Composite Structures, 2019, 229: 111375. DOI: 10.1016/j.compstruct.2019.111375.
    [26] JOOSTEN M W, DUTTON S, KELLY D, et al. Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element [J]. Composite Structures, 2011, 93(2): 682–689. DOI: 10.1016/j.compstruct.2010.08.011.
    [27] RICCIO A, RAIMONDO A, CAPRIO F D, et al. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system [J]. Composites Part B: Engineering, 2018, 150: 93–103. DOI: 10.1016/j.compositesb.2018.05.044.
    [28] RICCIO A, SAPUTO S, SELLITTO A, et al. On the crashworthiness behaviour of a composite fuselage sub-floor component [J]. Composite Structures, 2020, 234: 111662. DOI: 10.1016/j.compstruct.2019.111662.
    [29] JACKSON A, DUTTON S, GUNNION A J, et al. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing [J]. Composite Structures, 2011, 93(10): 2646–2654. DOI: 10.1016/j.compstruct.2011.04.032.
    [30] 解江, 宋山山, 宋东方, 等. 复合材料C型柱轴压失效分析的层合壳建模方法 [J]. 航空学报, 2019, 40(2): 522395. DOI: 10.7527/S1000-6893.2018.22395.

    XIE J, SONG S S, SONG D F, et al. Stacked shell modeling menthod for failure analysis of composite C-channel subject to axial cmpression [J]. Acta aeronautica et Astronautica Sinica, 2019, 40(2): 522395. DOI: 10.7527/S1000-6893.2018.22395.
    [31] 汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应试验 [J]. 复合材料学报, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.

    WANG Y, WU Z B, LIU F. Crush experiment of composite cargo floor stanchions [J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2200–2206. DOI: 10.13801/j.cnki.fhclxb.20200111.001.
    [32] FERABOLI P. Development of a corrugated test specimen for composite materials energy absorption [J]. Journal of Composite Materials, 2008, 42(3): 229–56. DOI: 10.1177/0021998307086202.
    [33] WAIMER M, KOHLGRÜBER D, HACHENBERG D, et al. Experimental study of CFRP components subjected to dynamic crash loads [J]. Composite Structures, 2013, 105: 288–299. DOI: 10.1016/j.compstruct.2013.05.030.
    [34] PATEL S, VUSA V R, SOARES C G. Crashworthiness analysis of polymer composites under axial and oblique impact loading [J]. International Journal of Mechanical Sciences, 2019, 156(1): 221–234. DOI: 10.1016/j.ijmecsci.2019.03.038.
    [35] WAIMER M, SIEMANN M H, FESER T. Simulation of CFRP components subjected to dynamic crash loads [J]. International Journal of Impact Engineering, 2017, 101(1): 115–131. DOI: 10.1016/j.ijimpeng.2016.11.011.
    [36] 蒋宏勇, 任毅如, 袁秀良, 等. 基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究 [J]. 航空学报, 2017, 38(6): 220717. DOI: 10.7527/S1000-6893.2016.220717.

    JIANG H Y, REN Y R, YUAN X L, et al. Crashworthiness of composite corrugated beam based on nonlinear progressive damage model [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 220717. DOI: 10.7527/S1000-6893.2016.220717.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  624
  • HTML全文浏览量:  267
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 录用日期:  2022-03-17
  • 修回日期:  2022-01-24
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回