Finite element simulations of wheel-rail impact response induced by wheel tread spalling of high-speed trains
-
摘要: 车轮踏面剥离是轨道车辆车轮非圆化损伤的常见形式之一。轮轨滚动接触过程中,车轮踏面剥离会循环冲击钢轨,诱发异常大的轮轨动态相互作用,严重影响高速列车运行平稳性和安全性。基于三维轮轨滚动接触有限元模型,模拟了高速列车车轮踏面剥离引起的轮轨冲击力学响应,分析了轮轨冲击过程中的轮轨接触力/压力、接触斑及黏/滑特性、钢轨表面节点速度分布和应力/应变状态等响应特征,讨论了列车速度、剥离长度和剥离深度等关键参数对轮轨冲击响应的影响。结果发现,车轮踏面剥离引起的轮轨动态垂向接触力随列车速度的提高呈现出先增大后减小的变化趋势,并在列车速度为300 km/h出现最大值,约为轮轨准静态垂向接触力的1.35倍;随着剥离长度的增大,轮轨动态接触力、轮/轨von Mises应力和等效塑性应变均显著增大;随着剥离深度的增大,仅车轮von Mises应力和等效塑性应变显著增大。Abstract: Wheel tread spalling is one of the common forms of wheel out-of-roundness damage of railway vehicles. During the wheel-rail rolling contact process, the wheel tread spalling will circularly impact the rail, inducing an abnormal large dynamic wheel-rail interaction, which has a serious effect on the stability and safety of high-speed trains. In order to reveal the mechanism of dynamic wheel-rail interaction induced by wheel tread spalling of high-speed trains, a three-dimensional finite element model for the wheel-rail rolling contact was built using the commercial software LS-DYNA. The mechanical responses of the wheel-rail impact caused by the wheel tread spalling of high-speed trains were simulated via the implicit-to-explicit sequential solution. The response characteristics of the wheel-rail vertical/longitudinal contact forces, contact pressure, contact patch, adhesion-slip areas, speed distribution of rail surface nodes, and the stress/strain states during the wheel-rail impact process were analyzed. Meanwhile, the effects of key parameters such as train speed, spalling length and spalling depth on the wheel-rail impact responses were discussed. The results indicate that the wheel-rail vertical dynamic contact force caused by the wheel tread spalling first increases with the train speed and then decreases, and the maximum value appears at a train speed of 300 km/h, which can reach 1.35 times the quasi-static wheel-rail vertical contact force. The maximum wheel-rail longitudinal force fluctuates slightly with the increase of the train speed, and is about 1.25 times the steady wheel-rail longitudinal contact force. The maximum wheel-rail vertical contact force, tangential contact force, the maximum von Mises stress, and equivalent plastic strain of the wheel-rail are monotonically increase with the spalling length. The spalling depth has almost no effect on the wheel-rail contact force, the maximum von Mises stress and equivalent plastic strain of the rail, but has a significant effect on the maximum von Mises stress and equivalent plastic strain of the wheel. The obtained results can provide technical support for the optimal design of the wheel-rail system and the safety of the train operation.
-
表 1 CRH系列各型动车组车轮踏面剥离镟修限度[20]
Table 1. Damage tolerances of wheel tread spalling of various types of CRH series EMUs[20]
一级修程 二级修程 适用车型 备注 长度/mm 深度/mm 面积/mm2 长度/mm 深度/mm 面积/mm2 ≤25 ≤1.5 − <25 <1.5 − CRH1A/B/E − ≤20 − − ≤20 − − CRH2A/B/E/C1 一处剥离 ≤10 − − ≤10 − − 二处剥离 ≤30 ≤0.25 − ≤30 ≤0.25 − CRH2C2/2G/380AL/6A/6F 车轮直径>840 mm ≤25 ≤0.25 − ≤25 ≤0.25 − 车轮直径≤840 mm ≤20 ≤0.5 ≤200 ≤20 ≤0.5 ≤200 CRH3C/380B/380BL/380CL − ≤20 ≤0.75 ≤150 ≤20 ≤0.75 ≤150 ≤20 ≤1.0 ≤100 ≤20 ≤1.0 ≤100 ≤20 ≤1.5 ≤100 ≤20 ≤1.5 ≤100 CRH5A/5G/5E − 部位 弹性模量
E/GPa密度
ρ/(kg·m−3)泊松比
ν屈服强度
σs/MPa切线模量
Et/GPa轮辋 213.00 7800 0.300 561 21 轮辐 216.00 7800 0.300 395 21 轮毂 213.00 7800 0.300 417 21 车轴 206.00 7800 0.300 560 20 钢轨 193.00 7800 0.300 525 19 轨道板 36.50 2500 0.167 − − 砂浆层 7.00 1800 0.200 − − 底座 34.00 2400 0.200 − − 路基 0.19 2250 0.200 − − 参数 簧上质量
M/kg一系悬挂刚度系数
Kc/(kN·m−1)一系悬挂阻尼
Cc/(kN·s·m−1)扣件刚度系数
Kf/(MN·m−1)扣件阻尼
Cf/(kN·s·m−1)轮轨阻尼常数
β/ms摩擦因数
f牵引系数
μ数值 9580 880 4 22 200 0.1 0.5 0.3 表 4 不同时刻的轮轨接触响应
Table 4. Wheel-rail contact responses at different times
t/ms 轮轨接触力/kN 接触位置 轮轨接触斑/mm2 轮轨最大接触压力/MPa 垂向 纵向 黏着区 滑动区 总面积 车轮 钢轨 22.2 99.6 30.1 − 146 111 257 685.0 576.3 22.7 68.9 21.3 左侧 29 49 78 759.5 759.9 右侧 66 44 110 848.6 785.1 23.3 97.2 24.7 左侧 50 40 90 897.9 951.8 右侧 92 37 129 989.8 1005.9 23.8 121.0 37.0 − 159 106 265 817.9 890.7 -
[1] 敬霖, 韩亮亮, 周彭滔. 基于SPH方法铁路车轴遭受道砟撞击的数值模拟 [J]. 爆炸与冲击, 2018, 38(3): 603–615. DOI: 10.11883/bzycj-2016-0265.JING L, HAN L L, ZHOU P T. A numerical simulation of railway axles subjected to ballast impact based on SPH method [J]. Explosion and Shock Waves, 2018, 38(3): 603–615. DOI: 10.11883/bzycj-2016-0265. [2] 李志强, 赵隆茂. 铁路车辆/轨道耦合系统在竖向冲击载荷作用下动态响应的计算机模拟研究 [J]. 应用力学学报, 2007, 24(1): 79–82. DOI: 10.3969/j.issn.1000-4939.2007.01.017.LI Z Q, ZHAO L M. Computational simulation to dynamic response of vehicle and track coupling system under vertical impact loading [J]. Chinese Journal of Applied Mechanics, 2007, 24(1): 79–82. DOI: 10.3969/j.issn.1000-4939.2007.01.017. [3] 孙伟, 王建国, 姜绍飞. 减小高速列车荷载对地面结构损害的数值分析 [J]. 爆炸与冲击, 2009, 29(2): 155–161. DOI: 10.11883/1001-1455(2009)02-0155-07.SUN W, WANG J G, JIANG S F. Reduction of high-speed train-induced building vibrations by protective trenches [J]. Explosion and Shock Waves, 2009, 29(2): 155–161. DOI: 10.11883/1001-1455(2009)02-0155-07. [4] JING L, LIU Z, LIU K. A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness [J]. Vehicle System Dynamics, 2020. DOI: 10.1080/00423114.2020.1815809. [5] 张斌, 付秀琴. 铁路车轮、轮箍踏面剥离的类型及形成机理 [J]. 中国铁道科学, 2001, 22(2): 73–78. DOI: 10.3321/j.issn:1001-4632.2001.02.011.ZHANG B, FU X Q. Type and formation mechanism of railway wheel and tire tread spall [J]. China Railway Science, 2001, 22(2): 73–78. DOI: 10.3321/j.issn:1001-4632.2001.02.011. [6] CONG T, HAN J M, HONG Y S, et al. Shattered rim and shelling of high-speed railway wheels in the very-high-cycle fatigue regime under rolling contact loading [J]. Engineering Failure Analysis, 2019, 97: 556–567. DOI: 10.1016/j.engfailanal.2019.01.047. [7] 张关震, 任瑞铭, 吴斯, 等. 不均匀组织对高速动车组车轮踏面剥离损伤的影响 [J]. 中国铁道科学, 2019, 40(5): 80–86. DOI: 10.3969/j.issn.1001-4632.2019.05.11.ZHANG G Z, REN R M, WU S, et al. Influence of non-uniform microstructure on shelling damage of wheel tread for high speed EMU [J]. China Railway Science, 2019, 40(5): 80–86. DOI: 10.3969/j.issn.1001-4632.2019.05.11. [8] CUMMINGS S M, LONSDALE C P. Wheel spalling literature review [C]//ASME 2008 Rail Transportation Division Fall Technical Conference. Chicago: ASME, 2008: 11–25. DOI: 10.1115/rtdf2008-74010. [9] 陶贵闯, 赵秀娟, 潘金芝, 等. D2高速车轮钢在滑动磨损下的白层形成与剥落 [J]. 摩擦学学报, 2018, 38(4): 437–444. DOI: 10.16078/j.tribology.2018.04.008.TAO G C, ZHAO X J, PAN J Z, et al. Formation and exfoliation of the white etching layer of D2 high speed wheel steel under sliding wear [J]. Tribology, 2018, 38(4): 437–444. DOI: 10.16078/j.tribology.2018.04.008. [10] ZENG D F, LU L T, GONG Y H, et al. Influence of solid solution strengthening on spalling behavior of railway wheel steel [J]. Wear, 2017, 372/373: 158–168. DOI: 10.1016/j.wear.2016.12.025. [11] WANG W J, GUO J, LIU Q Y. Experimental study on wear and spalling behaviors of railway wheel [J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1243–1249. DOI: 10.3901/cjme.2013.06.1243. [12] 郭俊, 王文健, 张伟, 等. 车轮踏面剥离试验研究 [J]. 铁道车辆, 2006, 44(4): 1–4. DOI: 10.3969/j.issn.1002-7602.2006.04.001.GUO J, WANG W J, ZHANG W, et al. Test and research on wheel tread peeling [J]. Rolling Stock, 2006, 44(4): 1–4. DOI: 10.3969/j.issn.1002-7602.2006.04.001. [13] KATO T, KATO H, MAKINO T, et al. Effect of elevated temperature on shelling property of railway wheel steel [J]. Wear, 2016, 366/367: 359–367. DOI: 10.1016/j.wear.2016.04.015. [14] CUMMINGS S M, MCCABE T, GOSSELIN D. Brake shoes and thermal mechanical shelling [C]//ASME 2008 Rail Transportation Division Fall Technical Conference. Chicago: ASME, 2009: 73-78. DOI: 10.1115/rtdf2008-74016. [15] 王晨, 马卫华, 罗世辉, 等. 机车车辆踏面损伤机理研究 [J]. 振动、测试与诊断, 2016, 36(5): 890–896. DOI: 10.16450/j.cnki.issn.1004-6801.2016.05.011.WANG C, MA W H, LUO S H, et al. Research on the tread damage of locomotives [J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(5): 890–896. DOI: 10.16450/j.cnki.issn.1004-6801.2016.05.011. [16] LIU W, MA W H, LUO S H, et al. Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration [J]. Vehicle System Dynamics, 2015, 53(4): 546–567. DOI: 10.1080/00423114.2015.1008015. [17] КРАСНОВ О Г, 宋忠明. 车轮踏面出现缺陷时转向架承载铸件的承载能力 [J]. 国外机车车辆工艺, 2017(5): 30–35.КРАСНОВ О Г, SONG Z M. Bearing capacity of bogie bearing castings with defects on wheel tread [J]. Foreign Locomotive & Rolling Stock Technology, 2017(5): 30–35. [18] 汪金余. 车轮内部损伤及踏面剥离的研究 [D]. 大连: 大连交通大学, 2018: 48−52. [19] 中国铁路总公司. 铁路技术管理规程: 高速铁路部分 [M]. 北京: 中国铁道出版社, 2014: 31−33. [20] 中国铁路总公司. 铁路动车组运用维修规则 [M]. 北京: 中国铁道出版社, 2017: 41−87. [21] 高义刚, 何庆复, 柳拥军. 车轮踏面损伤对策及其容限标准的修订 [J]. 铁道机车车辆, 2002(5): 20–23. DOI: 10.3969/j.issn.1008-7842.2002.05.007.GAO Y G, HE Q F, LIU Y J. Method of reducing wheel tread and the revision of tolerance criterion [J]. Railway Locomotive & Car, 2002(5): 20–23. DOI: 10.3969/j.issn.1008-7842.2002.05.007. [22] ZHAO X, WEN Z F, ZHU M H, et al. A study on high-speed rolling contact between a wheel and a contaminated rail [J]. Vehicle System Dynamics, 2014, 52(10): 1270–1287. DOI: 10.1080/00423114.2014.934845. [23] JING L, HAN L L. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress [J]. Vehicle System Dynamics, 2017, 55(12): 1946–1972. DOI: 10.1080/00423114.2017.1340651. [24] 韩亮亮, 敬霖, 赵隆茂. 基于Cowper-Symonds本构模型铁路车轮扁疤激发的轮轨冲击仿真分析 [J]. 高压物理学报, 2017, 31(6): 785–793. DOI: 10.11858/gywlxb.2017.06.014.HAN L L, JING L, ZHAO L M. Finite element simulation of the flat-induced wheel-rail impact based on the Cowper-Symonds empirical mode [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 785–793. DOI: 10.11858/gywlxb.2017.06.014. [25] LIU K, JING L. A finite element analysis-based study on the dynamic wheel-rail contact behaviour caused by wheel polygonization [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1285–1298. DOI: 10.1177/0954409719891549. [26] WEI Z L, SHEN C, LI Z L, et al. Wheel-rail impact at crossings: relating dynamic frictional contact to degradation [J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 041016. DOI: 10.1115/1.4035823.