Experimental study on the suppression of methane-air explosion by CF3I and CO2
-
摘要: 为了探究三氟碘甲烷CF3I和二氧化碳CO2复合使用对甲烷爆炸的抑制效果,采用容积为20 L的球形爆炸实验装置,研究了单独和复合使用三氟碘甲烷和二氧化碳对甲烷爆炸压力特性的影响。研究结果表明:添加三氟碘甲烷和二氧化碳后,甲烷爆炸极限范围逐渐缩小,且三氟碘甲烷对甲烷爆炸极限的影响更显著,当三氟碘甲烷和二氧化碳的体积分数分别达到5.5%和32.0%时,甲烷爆炸上下限重合,临界氧的体积分数分别为17.85%和12.50%。可见三氟碘甲烷对甲烷爆炸极限的影响机制与二氧化碳不同,并不是通过降氧为主而发挥抑制作用的。三氟碘甲烷对甲烷爆炸的抑制效果明显优于二氧化碳,对比体积分数为9.5%的甲烷爆炸最大爆炸压力和最大爆炸压力上升速率下降的比率,5.0%三氟碘甲烷的抑爆效果约是等量二氧化碳的6倍和5倍。二氧化碳掺混少量三氟碘甲烷后,抑爆效果大幅提升,掺混比例越,高效果越明显,且对抑制甲烷爆炸压力作用的提升更显著。三氟碘甲烷掺混体积分数大于等于1.0%时,二氧化碳单位增量导致甲烷最大爆炸压力下降的幅度有所增加。这说明三氟碘甲烷的加入具有改善抑爆效果和增强抑爆效率的双重作用。Abstract: To explore the inhibitory effect of the combined use of trifluoroiodomethane and carbon dioxide on methane explosion, a 20-L spherical explosion experimental system was used to carry out explosion experiments under different methane volume fractions when the two were used alone and in combination. The variation law of methane explosion pressure characteristics under different working conditions was studied. The results show that after adding trifluoroiodomethane and carbon dioxide, the explosion limit of methane is gradually reduced, and the effect of trifluoroiodomethane on the explosion limit of methane is more obvious. When the volume fractions of trifluoroiodomethane and carbon dioxide reached 5.5% and 32.0%, respectively, the upper and lower explosion limits of methane coincided, and at this moment the corresponding critical oxygen volume fractions were 17.85% and 12.50%, respectively. The affection mechanism of trifluoroiodomethane on the explosion limit of methane is different from that of carbon dioxide, and it does not exert an inhibitory effect mainly by reducing oxygen. The inhibition effect of trifluoroiodomethane on methane explosion is significantly better than that of carbon dioxide. Compared with the decrease ratio of the maximum explosion pressure and the maximum explosion pressure rise rate of 9.5% methane, the suppression explosion effects of 5% trifluoroiodomethane are about 6 times and 5 times as strong as those of the same amount of carbon dioxide. After carbon dioxide is mixed with a small amount of trifluoroiodomethane, the suppression explosion effect is greatly improved. Furthermore, the higher ratio of adding trifluoroiodomethane, the more obvious the effect. When the volume fraction of trifluoroiodomethane is greater than or equal to 1.0%, the magnitude of the drop in the maximum explosion pressure of methane has increased due to the increment of carbon dioxide units. It is indicated that the addition of trifluoroiodomethane has the dual effect of improving the explosion suppression effect and enhancing the explosion suppression efficiency when carbon dioxide is used to suppress methane explosion.
-
Key words:
- methane explosion /
- trifluoromethyl iodide /
- carbon dioxide /
- explosion pressure /
- explosion suppression
-
表 1 实验工况
Table 1. Experimental conditions
编号 工况 编号 工况 编号 工况 1 9.5%CH4 11 9.5%CH4+15.0%CO2 22 9.5%CH4+1.0%CF3I+14.0%CO2 2 9.5%CH4+0.5%CF3I 12 9.5%CH4+20.0%CO2 23 9.5%CH4+1.0%CF3I+19.0%CO2 3 9.5%CH4+1.0%CF3I 13 9.5%CH4+25.0%CO2 24 9.5%CH4+1.0%CF3I+24.0%CO2 4 9.5%CH4+1.5%CF3I 14 9.5%CH4+0.5%CF3I+4.5%CO2 25 9.5%CH4+1.5%CF3I+3.5%CO2 5 9.5%CH4+2.0%CF3I 15 9.5%CH4+0.5%CF3I+9.5%CO2 26 9.5%CH4+1.5%CF3I+8.5%CO2 6 9.5%CH4+3.0%CF3I 16 9.5%CH4+0.5%CF3I+14.5%CO2 27 9.5%CH4+1.5%CF3I+13.5%CO2 7 9.5%CH4+4.0%CF3I 17 9.5%CH4+0.5%CF3I+19.5%CO2 28 9.5%CH4+1.5%CF3I+18.5%CO2 8 9.5%CH4+5.0%CF3I 18 9.5%CH4+0.5%CF3I+24.5%CO2 29 9.5%CH4+1.5%CF3I+23.5%CO2 9 9.5%CH4+5.0%CO2 19 9.5%CH4+1.0%CF3I+4.0%CO2 10 9.5%CH4+10.0%CO2 21 9.5%CH4+1.0%CF3I+9.0%CO2 -
[1] 张景林. 气体、粉尘爆炸灾害及其安全技术 [J]. 中国安全科学学报, 2002, 12(5): 9–14. DOI: 10.16265/j.cnki.issn1003-3033.2002.05.003.ZHANG J L. Explosion disaster due to gas & dust and its safety technology [J]. China Safety Science Journal, 2002, 12(5): 9–14. DOI: 10.16265/j.cnki.issn1003-3033.2002.05.003. [2] MITU M, PRODAN M, GIURCAN V, et al. Influence of inert gas addition on propagation indices of methane-air deflagrations [J]. Process Safety and Environmental Protection, 2016, 102: 513–522. DOI: 10.1016/j.psep.2016.05.007. [3] 路长, 刘洋, 王鸿波, 等. CO2、H2对CH4/Air预混气爆炸特性的影响 [J]. 安全与环境学报, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024.LU C, LIU Y, WANG H B, et al. Experimental study of the effects of CO2/H2 on the characteristic features of methane/air bursts [J]. Journal of Safety and Environment, 2018, 18(5): 1788–1795. DOI: 10.13637/j.issn.1009-6094.2018.05.024. [4] WU S Y, LIN N K, SHU C M. Effects of flammability characteristics of methane with three inert gases [J]. Process Safety Progress, 2010, 29(4): 349–352. DOI: 10.1002/prs.10411. [5] GAO H B, QU Z G, TAO W Q, et al. Experimental investigation of methane/(Ar, N2, CO2)-air mixture combustion in a two-layer packed bed burner [J]. Experimental Thermal and Fluid Science, 2013, 44: 599–606. DOI: 10.1016/j.expthermflusci.2012.08.023. [6] LIANG Y T, ZENG W, HU E J. Experimental study of the effect of nitrogen addition on gas explosion [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 1–9. DOI: 10.1016/j.jlp.2012.08.002. [7] 张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07. [8] WANG Z R, NI L, LIU X, et al. Effects of N2/CO2 on explosion characteristics of methane and air mixture [J]. Journal of Loss Prevention in the Process Industries, 2014, 31: 10–15. DOI: 10.1016/j.jlp.2014.06.004. [9] LI M H, XU J C, WANG C J, et al. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N2/CO2 in a closed compartment [J]. Fuel, 2019, 255: 115747. DOI: 10.1016/j.fuel.2019.115747. [10] CHEN D G, YAO Y, DENG Y J. The influence of N2/CO2 blends on the explosion characteristics of stoichiometric methane-air mixture [J]. Process Safety Progress, 2019, 38(2): e12015. DOI: 10.1002/prs.12015. [11] DI BENEDETTO A, DI SARLI V, SALZANO E, et al. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures [J]. International Journal of Hydrogen Energy, 2009, 34(16): 6970–6978. DOI: 10.1016/j.ijhydene.2009.05.120. [12] ZENG W, MA H, LIANG Y T, et al. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture [J]. Journal of Advanced Research, 2015, 6(2): 189–201. DOI: 10.1016/j.jare.2014.01.003. [13] 周福宝, 王德明, 章永久, 等. 含氮气三相泡沫惰化火区的机理及应用研究 [J]. 煤炭学报, 2005, 30(4): 443–446. DOI: 10.3321/j.issn:0253-9993.2005.04.008.ZHOU F B, WANG D M, ZHANG Y J, et al. Inerting mechanism of three-phase foam containing nitrogen and its application to underground fire zone [J]. Journal of China Coal Society, 2005, 30(4): 443–446. DOI: 10.3321/j.issn:0253-9993.2005.04.008. [14] 罗振敏, 康凯. CO2抑制甲烷-空气链式爆炸微观机理的仿真分析 [J]. 中国安全科学学报, 2015, 25(5): 42–48. DOI: 10.16265/j.cnki.issn1003-3033.2015.05.008.LUO Z M, KANG K. Simulative analysis of microscopic mechanism of CO2 inhibiting methane-air chain explosion [J]. China Safety Science Journal, 2015, 25(5): 42–48. DOI: 10.16265/j.cnki.issn1003-3033.2015.05.008. [15] HALTER F, FOUCHER F, LANDRY L, et al. Effect of dilution by nitrogen and/or carbon dioxide on methane and iso-octane air flames [J]. Combustion Science & Technology, 2009, 181(6): 813–827. DOI: 10.1080/00102200902864662. [16] 邱雁, 高广伟, 罗海珠. 充注惰气抑制矿井火区瓦斯爆炸机理 [J]. 煤矿安全, 2003, 34(2): 8–11. DOI: 10.3969/j.issn.1003-496X.2003.02.005.QIU Y, GAO G W, LUO H Z. Mechanism of pumping inert gas into mine fire area for inhibition of methane explosion [J]. Safety in Coal Mines, 2003, 34(2): 8–11. DOI: 10.3969/j.issn.1003-496X.2003.02.005. [17] PAGLIARO J L, LINTERIS G T, SUNDERLAND P B, et al. Combustion inhibition and enhancement of premixed methane-air flames by halon replacements [J]. Combustion and Flame, 2015, 162(1): 41–49. DOI: 10.1016/j.combustflame.2014.07.006. [18] WILLIAMS B A, L’ESPÉRANCE D M, FLEMING J W. Intermediate species profiles in low-pressure methane/oxygen flames inhibited by 2-H heptafluoropropane: comparison of experimental data with kinetic modeling [J]. Combustion & Flame, 2000, 120(1/2): 160–172. DOI: 10.1016/S0010-2180(99)00081-4. [19] 薛少谦. 七氟丙烷抑制甲烷空气预混气体爆炸的实验研究 [J]. 矿业安全与环保, 2017, 44(1): 5–8. DOI: 10.3969/j.issn.1008-4495.2017.01.002.XUE S Q. Experimental research on premixed methane-air explosion suppression with heptafluoropropane [J]. Mining Safety & Environmental Protection, 2017, 44(1): 5–8. DOI: 10.3969/j.issn.1008-4495.2017.01.002. [20] 李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究[D]. 辽宁大连: 大连理工大学, 2018.LI Y M. Experimental study of suppressing the methane/air explosion by heptafluoropropane [D]. Dalian, Liaoning, China: Dalian University of Technology, 2018. [21] 詹平, 钱华, 刘大斌, 等. CF3I对R290的抑爆性能研究 [J]. 工业安全与环保, 2018, 44(9): 49–51. DOI: 10.3969/j.issn.1001-425X.2018.09.013.ZHAN P, QIAN H, LIU D B, et al. Study of the explosion suppression performance of CF3I on R290 [J]. Industrial Safety and Environmental Protection, 2018, 44(9): 49–51. DOI: 10.3969/j.issn.1001-425X.2018.09.013. [22] MATHIEU O, GOULIER J, GOURMEL F, et al. Experimental study of the effect of CF3I addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane [J]. Proceedings of the Combustion Institute, 2015, 35(3): 2731–2739. DOI: 10.1016/j.proci.2014.05.096. [23] LUO C M, DLUGOGORSKI B, KENNEDY E, et al. Inhibition of premixed methane-air flames with CF3I [J]. Chemical Product and Process Modeling, 2009, 4(3): Article 12. DOI: 10.2202/1934-2659.1448. [24] BABUSHOK V, NOTO T, BURGESS D R F, et al. Influence of CF3I, CF3Br, and CF3H on the high-temperature combustion of methane [J]. Combustion and Flame, 1996, 107(4): 351–367. DOI: 10.1016/S0010-2180(96)00052-1. [25] LUO C M, DLUGOGORSKI B Z, KENNEDY E M. Influence of CF3I and CBrF3 on methanol-air and methane-air premixed flames [J]. Fire Technology, 2008, 44(3): 221–237. DOI: 10.1007/s10694-007-0033-5. [26] NOTO T, BABUSHOK V, BURGESS D R JR, et al. Effect of halogenated flame inhibitors on C1-C2 organic flames [J]. Symposium (International) on Combustion, 1996, 26(1): 1377–1383. DOI: 10.1016/S0082-0784(96)80357-2. [27] 段远源, 史琳, 朱明善, 等. 三氟碘甲烷(CF3I)的热物理性质 [J]. 清华大学学报(自然科学版), 2000, 40(6): 60–63. DOI: 10.3321/j.issn:1000-0054.2000.06.018.DUAN Y Y, SHI L, ZHU M S, et al. Thermophysical properties of trifluoroiodomethane (CF3I) [J]. Journal of Tsinghua University (Science and Technology), 2000, 40(6): 60–63. DOI: 10.3321/j.issn:1000-0054.2000.06.018. [28] 吕咏梅. 三氟碘甲烷合成与应用进展 [J]. 有机氟工业, 2010(1): 33–35.LV Y M. Progress in the application of trifluoroiodomethane [J]. Organo-Fluorine Industry, 2010(1): 33–35. [29] 周黎旸. 三氟碘甲烷应用进展 [J]. 化工生产与技术, 2009, 16(4): 5–6. DOI: 10.3969/j.issn.1006-6829.2009.04.002.ZHOU L Y. Application progress of trifluoromethyl iodide [J]. Chemical Production and Technology, 2009, 16(4): 5–6. DOI: 10.3969/j.issn.1006-6829.2009.04.002. [30] 陶贤文, 李绯, 袁国清, 等. CF3I气体自动灭火系统在外浮顶油罐中的应用 [J]. 油气田地面工程, 2016, 35(4): 1–3; 7. DOI: 10.3969/j.issn.1006-6896.2016.4.001.TAO X W, LI F, YUAN G Q, et al. Application of CF3I automatically suppression system on open-top floating roof tanks [J]. Oil-Gas Field Surface Engineering, 2016, 35(4): 1–3; 7. DOI: 10.3969/j.issn.1006-6896.2016.4.001. [31] 蔡凡一, 薛健, 谭东现, 等. 三氟碘甲烷在有功负载电流下分解特性研究 [J]. 云南电力技术, 2019, 47(4): 8–12; 25. DOI: 10.3969/j.issn.1006-7345.2019.04.002.CAI F Y, XUE J, TAN D X, et al. Decomposition products analysis of trifluoroiodomethane (CF3I) under load current interruption [J]. Yunnan Electric Power, 2019, 47(4): 8–12; 25. DOI: 10.3969/j.issn.1006-7345.2019.04.002. [32] 邢其毅, 裴伟伟, 徐瑞秋, 等. 基础有机化学(上册) [M]. 4版. 北京: 北京大学出版社, 2016.XING Q Y, PEI W W, XU R Q, et al. Basic organic chemistry (Ⅰ) [M]. 4th ed. Beijing, China: Peking University Press, 2016.