Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner
-
摘要: 为了研究组合药型罩聚能装药战斗部对含水复合结构的毁伤机理,基于LS-DYNA软件的任意拉格朗日-欧拉(arbitrary Lagrangian-Eulerian, ALE)流固耦合算法,对水下组合药型罩聚能装药战斗部侵彻体的形成以及穿靶过程开展研究,采用数值模拟等比例模型对水下组合药型罩聚能装药战斗部对靶板毁伤进行试验验证。研究结果表明,在偏心亚半球缺罩罩顶设计偏心亚半球形罩能够在侵彻体前端形成细长的杆式射流,可以增加整个侵彻体长度和头部侵彻体速度。在穿水和靶板过程中,利用头部杆式射流形成空腔帮助后续侵彻体低阻随进。对靶板毁伤过程的分析发现,与战斗部直接连接的第1层靶板将会受到侵彻体的高速冲击作用和爆炸波沿水介质传播过来的强冲击波联合作用,而随着水层厚度的增加,沿水中传播的爆炸冲击波强度会被迅速衰减,爆炸冲击波对后续靶板的作用变得不明显,主要为侵彻体的冲击作用。最后利用设计的组合药型罩结构开展了试验验证,对比分析了每层靶板的穿孔尺寸,试验结果与数值计算结果符合较好,最大误差小于15%。Abstract: In order to study the damage mechanism of the shaped charge warhead with a combined charge liner to the water containing composite structure, the formation and penetration process of the penetrator formed by the combined charge liner were studied based on the arbitrary Lagrangian-Euler (ALE) fluid structure coupling algorithm in the LS-DYNA. The damage of the shaped charge warhead with composite liner to the target was verified by experiments. A hemispherical liner eccentric to the axis was designed at the top of the original eccentric sub-hemispherical liner. The forming process of the penetrator, the response state of the water medium, the dynamic energy loss in the process of penetrating the target and the damage mechanism to the target were analyzed for the warhead with the combined liner. The results show that the design of the sub-hemispherical liner on the top of the eccentric sub-hemispherical liner can form a slender rod-like jet at the front of the penetrator, which can increase the whole length of the penetrator and the velocity of the head penetrator. In the process of the target, the head rod-like penetrators form a cavity to help the subsequent penetrators follow with low resistance. Through the analysis of the damage process to the target, it is found that the first layer of target directly connected with the warhead will be affected by both the high-speed impact of the penetrator and the strong shock wave transmitted by the explosion wave along the water medium. With the increase of the thickness of the water layer, the intensity of the explosion shock wave propagating along the water will be rapidly attenuated, and the effect of the explosion shock wave becomes less obvious to the subsequent target. The experimental verification was carried out by the warhead with composite liner structure. The perforation size of each target was compared and analyzed. The experimental results are in good agreement with the numerical simulation results, and the maximum error is within 15%.
-
表 1 材料本构模型及状态方程
Table 1. Constitutive model and state equation of the materials
材料 本构模型 状态方程 炸药 HIGH_EXPLOSIVE_BURN JWL 药型罩 STEINBERG GRÜNEISEN 壳体 JOHNSON_COOK GRÜNEISEN 水 NULL LINEAR_POLYNOMIAL 空气 NULL LINEAR_POLYNOMIAL 靶板 JOHNSON_COOK GRÜNEISEN 表 2 80 μs时组合药型罩和偏心亚半球缺罩的外形尺寸统计
Table 2. Statistics of overall dimensions of combined liner and eccentric sub-hemispherical liner at 80 μs
D1/mm D2/mm L1/mm S1/mm S2/mm 44 (0.36d2) 12 (0.10d2) 169 (1.39d2) 22 (0.18d2) 104 (0.85d2) S3/mm D3/mm D4/mm D5/mm L2/mm 43 18 46 (0.38d2) 12 (0.10d2) 103 (0.84d2) 表 3 药型罩聚能装药穿孔尺寸数值模拟计算与试验结果对比
Table 3. Comparison between numerical calculation and experimental results of perforation size
靶板 偏心亚半球缺罩
破孔尺寸/mm组合药型罩破孔尺寸/mm 组合药型罩计算
结果偏差/%数值模拟结果 实验结果 第1层 49.6 46.6 50 −6.8 第2层 45.4 42.4 37 14.6 第3层 59.2 41.8 40 4.5 第4层 64.0 43.2 41 5.4 后效靶 未穿透 46.6 70×49 4.9 注:偏心亚半球缺罩破孔尺寸为数值模拟结果;组合药型罩计算结果偏差为数值模拟结果相对于试验结果的偏差。 -
[1] 谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07. [2] 梁争峰, 胡焕性. 爆炸成形弹丸技术现状与发展 [J]. 火炸药学报, 2004, 27(4): 21–25. DOI: 10.3969/j.issn.1007-7812.2004.04.006.LIANG Z F, HU H X. The current situation and future development direction of explosively formed projectile technology [J]. Chinese Journal of Explosives & Propellants, 2004, 27(4): 21–25. DOI: 10.3969/j.issn.1007-7812.2004.04.006. [3] 吴晗玲, 段卓平, 汪永庆. 杆式射流形成的数值模拟研究 [J]. 爆炸与冲击, 2006, 26(4): 328–332. DOI: 10.11883/1001-1455(2006)04-0328-05.WU H L, DUAN Z P, WANG Y Q. Simulation investigation of rod-like jets [J]. Explosion and Shock Waves, 2006, 26(4): 328–332. DOI: 10.11883/1001-1455(2006)04-0328-05. [4] 徐斌, 王成, 徐文龙. 高速杆式射流形成的数值模拟与实验研究 [J]. 北京理工大学学报, 2018, 38(4): 331–337. DOI: 10.15918/j.tbit1001-0645.2018.04.001.XU B, WANG C, XU W L. Numerical simulation and experiment investigation on hypervelocity jetting projectile charge formation [J]. Transactions of Beijing Institute of Technology, 2018, 38(4): 331–337. DOI: 10.15918/j.tbit1001-0645.2018.04.001. [5] 王利侠, 谷鸿平, 丁刚, 等. 聚能射流对带壳浇注PBX装药的撞击响应 [J]. 含能材料, 2015, 23(11): 1067–1072. DOI: 10.11943/j.issn.1006-9941.2015.11.006.WANG L X, GU H P, DING G, et al. Reaction characteristics for shelled cast-cured PBX explosive impacted by shaped charge jet [J]. Chinese Journal of Energetic Materials, 2015, 23(11): 1067–1072. DOI: 10.11943/j.issn.1006-9941.2015.11.006. [6] 王海福, 江增荣, 李向荣. 药型罩参数对聚能装药水下作用效应的影响 [J]. 北京理工大学学报, 2006, 26(5): 405–409. DOI: 10.3969/j.issn.1001-0645.2006.05.007.WANG H F, JIANG Z R, LI X R. Influences of liner parameters on the effects of shaped charge operating underwater [J]. Transactions of Beijing Institute of Technology, 2006, 26(5): 405–409. DOI: 10.3969/j.issn.1001-0645.2006.05.007. [7] 周方毅, 詹发民, 姜涛, 等. 一种组合药型罩聚能战斗部 [J]. 鱼雷技术, 2012, 20(5): 380–383; 400. DOI: 10.3969/j.issn.1673-1948.2012.05.014.ZHOU F Y, ZHAN F M, JIANG T, et al. An idea about shaped charge warhead with combined charge liner for torpedo [J]. Torpedo Technology, 2012, 20(5): 380–383; 400. DOI: 10.3969/j.issn.1673-1948.2012.05.014. [8] 周方毅, 黄雪峰, 詹发民, 等. 一种双球缺组合药型罩聚能鱼雷战斗部研究 [J]. 水下无人系统学报, 2017, 25(4): 278–281; 287. DOI: 10.11993/j.issn.2096-3920.2017.03.011.ZHOU F Y, ZHAN F M, JIANG T, et al. A shaped charge warhead with two spherical combined liners for torpedo [J]. Journal of Unmanned Undersea Systems, 2017, 25(4): 278–281; 287. DOI: 10.11993/j.issn.2096-3920.2017.03.011. [9] 张春辉, 张斐, 王志军, 等. 复合材质杆式射流侵彻水下目标的数值模拟 [J]. 爆破器材, 2019, 48(1): 8–14. DOI: 10.3969/j.issn.1001-8352.2019.01.002.ZHANG C H, ZHANG F, WANG Z J, et al. Numerical simulation of composite-material rod-like jet penetrating underwater targets [J]. Explosive Materials, 2019, 48(1): 8–14. DOI: 10.3969/j.issn.1001-8352.2019.01.002. [10] 李兵, 刘念念, 陈高杰, 等. 水中聚能战斗部毁伤双层圆柱壳的数值模拟与试验研究 [J]. 兵工学报, 2018, 39(1): 38–45. DOI: 10.3969/j.issn.1000-1093.2018.01.004.LI B, LIU N N, CHEN G J, et al. Numerical simulation and experimental research on damage of shaped charge warhead to double-layer columniform shell [J]. Acta Armamentarii, 2018, 39(1): 38–45. DOI: 10.3969/j.issn.1000-1093.2018.01.004. [11] 王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究 [J]. 兵器装备工程学报, 2021, 42(12): 112–116. DOI: 10.11809/bqzbgcxb2021.12.016.WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-Submarine torpedo warhead on typical submarine targets [J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116. DOI: 10.11809/bqzbgcxb2021.12.016. [12] 王长利, 马坤, 周刚, 等. 防雷舱结构在聚能装药水下爆炸作用下的毁伤研究 [J]. 爆炸与冲击, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119.WANG C L, MA K, ZHOU G, et al. Damage effect of cabin near ship board under shaped charge exploding underwater [J]. Explosion and Shock Waves, 2018, 38(5): 1145–1154. DOI: 10.11883/bzycj-2017-0119. [13] 王长利, 周刚, 马坤, 等. 典型含水复合结构在聚能装药水下爆炸作用下的毁伤 [J]. 船舶力学, 2018, 22(8): 1001–1010. DOI: 10.3969/j.issn.1007-7294.2018.08.010.WANG C L, ZHOU G, MA K, et al. Damage anlysis of typical water partitioned structure under shaped charge underwater explosion [J]. Journal of Ship Mechanics, 2018, 22(8): 1001–1010. DOI: 10.3969/j.issn.1007-7294.2018.08.010. [14] 杨莉, 张庆明, 汪玉, 等. 反舰聚能战斗部装药结构研究 [J]. 兵工学报, 2009(S2): 154–158.YANG L, ZHANG Q M, WANG Y, et al. Research on shaped charge warhead of anti-ship missile [J]. Acta Armamentarii, 2009(S2): 154–158. [15] 傅磊, 王伟力, 李永胜, 等. 组合药型罩水介质中成型的数值仿真 [J]. 鱼雷技术, 2015, 23(5): 367–373. DOI: 10.11993/j.issn.1673-1948.2015.05.009.FU L, WANG W L, LI Y S, et al. Numerical simulation of combined liner formation in water [J]. Torpedo Technology, 2015, 23(5): 367–373. DOI: 10.11993/j.issn.1673-1948.2015.05.009. [16] 时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析 [M]. 北京: 清华大学出版社, 2005: 295–296. [17] 时党勇. 倾斜尾翼爆炸成型弹丸的数值模拟和外弹道计算 [C]// 第十届全国爆炸与安全技术会议论文集. 昆明: 2011, 286–292. [18] LEE S G, BAEK Y H, LEE I H, et al. Numerical simulation of 2D sloshing by using ALE2D technique of LS-DYNA and CCUP methods [C]// The Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference (ISOPE-2010 Beijing). International Society of Offshore and Polar Engineers (ISOPE), 2010: 192–199. [19] MULLIN M J, O’TOOLE B J. Simulation of energy absorbing materials in blast loaded structures [C]// 8th International LS-DYNA Users Conference. 2004: 2–7. [20] 吴海军, 王可慧, 柯明, 等. 多点同步起爆条件下环形射流成型及侵彻过程的数值模拟 [J]. 现代应用物理, 2018, 9(2): 75–82. DOI: 10.12061/j.issn.2095-6223.2018.021002.WU H J, WANG K H, KE M, et al. Numerical simulation on formation and penetration processes of the annular jet with multi-points synchronous explosive circuit [J]. Modern Applied Physics, 2018, 9(2): 75–82. DOI: 10.12061/j.issn.2095-6223.2018.021002. [21] ROBBINS J R, DING J L, GUPTA Y M. Load spreading and penetration resistance of layered structures-a numerical study [J]. International Journal of Impact Engineering, 2004, 30(6): 593–615. DOI: 10.1016/j.ijimpeng.2003.08.001. 期刊类型引用(31)
1. 徐旸. 厚煤层工作面窄煤柱沿空掘巷静态切顶技术研究. 煤. 2024(03): 65-68+82 . 百度学术
2. 谈博海,姚囝,杜键,孙明伟,刘海,关文超. 膨胀型浆体注浆锚杆拉拔力学特性及损伤失效机制研究. 岩石力学与工程学报. 2024(12): 3058-3069 . 百度学术
3. 吴俊杰,袁瑞甫,解帅帅,程高宇,李辉. 静态破碎剂膨胀性能测试及施工工艺优化. 地下空间与工程学报. 2024(06): 2034-2044 . 百度学术
4. 王献杰,吴爱军,鲁力,田世祥,张英,刘静雯. 加热装置对静态破碎剂膨胀性能的影响. 工程爆破. 2024(06): 114-119 . 百度学术
5. 张海龙. 瞬时胀裂破岩技术在厚层砂岩顶板控制中的应用. 陕西煤炭. 2023(04): 187-191+216 . 百度学术
6. 刘迪,顾云,孙飞,李飞,陈顺禄,刘勤杰. 基于聚能射流的岩石定向劈裂机制. 爆炸与冲击. 2023(08): 81-91 . 本站查看
7. 马丽洁,左安家,李昊,李迪. 静态膨胀剂体积增长率的实验研究. 云南化工. 2022(01): 14-16 . 百度学术
8. 史伟华,徐安东,万迎新,吕谦和,张骞. 绳锯牵拉破碎混凝土排水渠方案优化分析. 青岛大学学报(自然科学版). 2022(02): 72-77 . 百度学术
9. 戴选锋,关盛杰,李小龙,王攀,孔德森. 钻孔灌注桩桩头静态破碎参数优化研究. 山东科技大学学报(自然科学版). 2022(03): 75-82 . 百度学术
10. 郑文忠,李瑞森,徐笠博,侯晓萌. 静态破碎技术研究综述与建议. 哈尔滨工业大学学报. 2021(05): 190-200 . 百度学术
11. 钟振,杨熙华,顾杨圣,娄荣,夏才初,包春燕. 混凝土静态破碎剂膨胀性能及其破碎孔径优化. 三峡大学学报(自然科学版). 2021(04): 56-61 . 百度学术
12. 李小龙,关盛杰,高帅,王彦军,刘世强,孔德森. 钻孔灌注桩桩头静态破碎原理与裂纹发展机理. 科学技术与工程. 2021(22): 9549-9553 . 百度学术
13. 何方. 液压劈裂技术在隧道静态破碎开挖中的应用. 矿产与地质. 2021(06): 1198-1204 . 百度学术
14. 张志伟,谢益盛,张鹏鹏. 静力定向破岩技术在处理巷道悬顶问题中的研究与应用. 煤炭工程. 2020(02): 69-73 . 百度学术
15. 娄荣,陈威文,钟振,周卫东,张鑫,王艳丽,杨熙华. 基于XFEM的RC梁静态破碎研究. 工程爆破. 2020(01): 15-20 . 百度学术
16. 姜智盛,郑文忠,李瑞森,侯晓萌. 混凝土块体静态破碎试验研究. 哈尔滨工业大学学报. 2020(06): 188-193 . 百度学术
17. 刘文,吴爱军,王辉,张龙. 铅锌尾矿砂掺量对静态破碎剂性能影响的实验研究. 爆破. 2020(02): 121-126+140 . 百度学术
18. 周云涛,石胜伟,谢忠胜,张勇,王林峰. 直立岩层边坡岩体的静态爆破参数试验研究. 金属矿山. 2020(06): 184-190 . 百度学术
19. 李瑞森,郑文忠,徐笠博,王英. 静态破碎剂对钢管径向膨胀压应力试验. 哈尔滨工业大学学报. 2020(10): 19-27 . 百度学术
20. 娄荣,陈威文,周方均,邢黎明,商圣波,倪晓静. 钢筋混凝土构件的大孔径静态破碎技术研究. 爆破. 2020(04): 127-131 . 百度学术
21. 谢益盛,杨光辉,黄小朋. 静态破碎剂膨胀力学性能试验研究. 煤矿安全. 2019(03): 9-12+16 . 百度学术
22. 李胜,李宗杰,罗明坤. 煤岩静态破碎剂合理组分及配比实验研究. 爆破. 2018(01): 137-141+153 . 百度学术
23. 宫志颖,马芹永. 切缝PVC管导向静态破裂混凝土试块试验与分析. 安徽理工大学学报(自然科学版). 2018(02): 48-52 . 百度学术
24. 张嘉勇,崔啸,许慎,吕志强,周宝生,孙胜. 铁尾矿粉对静态破碎剂反应温度影响研究. 矿产综合利用. 2018(02): 121-124 . 百度学术
25. 龚迪光,陈军斌,曲占庆,郭天魁. 径向井排引导水力压裂裂缝扩展机理研究. 西南石油大学学报(自然科学版). 2018(05): 122-130 . 百度学术
26. 马芹永,薛志翔,宫志颖,李敏. 钢筋混凝土梁静态破裂试验与应变分析. 爆破. 2017(03): 14-19+36 . 百度学术
27. 薛志翔,马芹永. 钢筋混凝土试块静态破裂试验与分析. 安徽理工大学学报(自然科学版). 2017(01): 60-64 . 百度学术
28. 刘锦伟,谢雄刚,刘锦礼,郭鹏飞. 静态膨胀剂喷孔伤人事故风险分析及预防对策. 建筑技术. 2017(04): 368-370 . 百度学术
29. 葛进进,徐颖,郑志涛. 水剂比对静态破碎效果影响的试验研究. 煤炭技术. 2017(02): 175-176 . 百度学术
30. 冯颖. 钢筋混凝土内支撑结构在超大深基坑中的应用. 施工技术. 2016(S1): 147-150 . 百度学术
31. 李松,周旭,杨陆海,林强. 无声破碎材料在复杂厂区内岩体开挖中的应用. 采矿技术. 2016(04): 91-93 . 百度学术
其他类型引用(26)
-