Al/PTFE活性材料冲击载荷作用下响应特性研究

任耶平 刘睿 陈鹏万 郭岩松 胡启文 葛超 王海福

任耶平, 刘睿, 陈鹏万, 郭岩松, 胡启文, 葛超, 王海福. Al/PTFE活性材料冲击载荷作用下响应特性研究[J]. 爆炸与冲击, 2022, 42(6): 063103. doi: 10.11883/bzycj-2021-0397
引用本文: 任耶平, 刘睿, 陈鹏万, 郭岩松, 胡启文, 葛超, 王海福. Al/PTFE活性材料冲击载荷作用下响应特性研究[J]. 爆炸与冲击, 2022, 42(6): 063103. doi: 10.11883/bzycj-2021-0397
REN Yeping, LIU Rui, CHEN Pengwan, GUO Yansong, HU Qiwen, GE Chao, WANG Haifu. A study of the response characteristics of Al/PTFE reactive materials under shock loading[J]. Explosion And Shock Waves, 2022, 42(6): 063103. doi: 10.11883/bzycj-2021-0397
Citation: REN Yeping, LIU Rui, CHEN Pengwan, GUO Yansong, HU Qiwen, GE Chao, WANG Haifu. A study of the response characteristics of Al/PTFE reactive materials under shock loading[J]. Explosion And Shock Waves, 2022, 42(6): 063103. doi: 10.11883/bzycj-2021-0397

Al/PTFE活性材料冲击载荷作用下响应特性研究

doi: 10.11883/bzycj-2021-0397
基金项目: 国家自然科学基金(12132003);军委科技委基础加强重点项目(2019-JCJQ-ZD-011-00);爆炸科学与技术国家重点实验室自主课题(QNKT20-07)
详细信息
    作者简介:

    任耶平(1994- ),男,硕士,676936081@qq.com

    通讯作者:

    刘 睿(1985- ),男,博士,助理教授,liurui1985@bit.edu.cn

  • 中图分类号: O389

A study of the response characteristics of Al/PTFE reactive materials under shock loading

  • 摘要: 为了研究铝(Al)/聚四氟乙烯(polytetrafluoroethylene, PTFE)活性材料冲击载荷作用下响应特性,制备了具有反应活性的Al/PTFE块体材料,设计了拉氏实验,采用不同厚度的铝隔板控制入射冲击波幅值,利用锰铜压阻计测量了冲击波在材料中传播过程压力演化过程。同时,基于AUTODYN有限元软件,采用Lee-Tarver三项式点火模型对Al/PTFE活性材料拉氏实验进行数值模拟,并探讨了冲击波在500 mm长的Al/PTFE活性材料中长距离传播行为。研究结果表明,冲击波压力在Al/PTFE活性材料内短距离传播过程中存在明显的衰减,但是,当冲击波传播到远距离时,冲击波压力幅值和冲击波速度趋于稳定,分别为1.3 GPa和2 180 m/s;同时,距离铝隔板越远的材料,其反应度越低并最终趋于0.17。正是由于材料化学反应释能,导致了冲击波压力传播过程最终趋于稳定状态。
  • 图  1  Al/PTFE混合粉末SEM图像和组分EDS图像

    Figure  1.  SEM image and composition EDS images of the Al/PTFE mixed powder

    图  2  Al/PTFE混合粉末XRD分析结果

    Figure  2.  XRD analysis result of the Al/PTFE mixed powder

    图  3  Al/PTFE冷压成型压力-时间曲线

    Figure  3.  Pressure-time curve of Al/PTFE cold-pressed formation

    图  4  尺寸为$\varnothing $50 mm × 3 mm 的Al/PTFE圆片块体

    Figure  4.  Al/PTFE round flakes with the size of $\varnothing $50 mm × 3 mm

    图  5  拉氏实验装置

    Figure  5.  The Lagrangian experimental setup

    图  6  锰铜压阻计

    Figure  6.  Manganese copper pressure sensors

    图  7  在不同铝隔板厚度条件下,冲击波在Al/PTFE材料中传播过程中的压力变化

    Figure  7.  Shock wave pressure changes during shock wave propagation in Al/PTFE materials in the cases of different aluminum partition thicknesses

    图  8  铝隔板厚度分别为10和5 mm时的时间-位移曲线和速度-位移曲线

    Figure  8.  Time-displacement curves and velocity-displacement curves when the aluminum partition thicknesses are 10 and 5 mm, respectively

    图  9  拉氏实验计算模型

    Figure  9.  The calculation model for the Lagrangian experiment

    图  10  在10和5 mm隔板厚度条件下冲击波压力的计算值与实验值

    Figure  10.  Simulated and experimental results of shock pressure with the partition of 10 and 5 mm in thickness

    图  11  拉氏实验500 mm长样品计算模型

    Figure  11.  The calculation model of the Lagrangian experiment for the specimen of 500 mm in length

    图  12  不同铝隔板厚度时压力时间曲线

    Figure  12.  Pressure-time curves with different aluminum partition thicknesses

    图  13  隔板厚度分别为10和2 mm时冲击波速度随传播距离的变化曲线

    Figure  13.  Change of the shock wave velocity with propagation distance when the partition thicknesses are 10 and 2 mm, respectively

    图  14  不同铝隔板厚度时反应度时间曲线

    Figure  14.  Reaction degree-time curves with different aluminum partition thicknesses

    表  1  JWL状态方程参数[29-30]

    Table  1.   JWL-equation-of-state parameters[29-30]

    材料$ {\rho _0} $/(g∙cm−3)A/GPaB/GPaR1R2ω
    PBX-8701[29]1.70852.418.024.61.30.38
    Al/PTFE[30]1.9215.90.00234.61.30.18
    下载: 导出CSV

    表  2  Al隔板材料 Johnson-Cook模型参数

    Table  2.   The Johnson-Cook-model parameters of the aluminum partition

    A/GPaB/GPanCmTm/K
    27.60.4260.340.0151775
    下载: 导出CSV

    表  3  Al/PTFE材料Lee-Tarver点火增长模型参数[30]

    Table  3.   Lee-Tarver ignition-and-growth model parameters for Al/PTFE materials[30]

    I/sbaxG1/(GPa−2∙s−1)cdy
    2×10−50.22042000.6670.3332
    下载: 导出CSV
  • [1] 张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.

    ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
    [2] 王海福, 刘宗伟, 俞为民, 等. 活性破片能量输出特性实验研究 [J]. 北京理工大学学报, 2009, 29(8): 663–666.

    WANG H F, LIU Z W, YU W M, et al. Experimental investigation of energy release characteristics of reactive fragments [J]. Transactions of Beijing Institute of Technology, 2009, 29(8): 663–666.
    [3] 帅俊峰, 蒋建伟, 王树有, 等. 复合反应破片对钢靶侵彻的实验研究 [J]. 含能材料, 2009, 17(6): 722–725. DOI: 10.3969/j.issn.1006-9941.2009.06.019.

    SHUAI J F, JIANG J W, WANG S Y, et al. Compound reactive fragment penetrating steel target [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 722–725. DOI: 10.3969/j.issn.1006-9941.2009.06.019.
    [4] 辛春亮, 史文卿, 张雷雷, 等. 活性药型罩聚能装药子弹对钢锭的毁伤效应研究 [C]//2014’(第六届)含能材料与钝感弹药技术学术研讨会论文集. 四川绵阳: 《含能材料》编辑部, 2014.
    [5] 汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.

    WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.
    [6] 叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.

    YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials & Technology, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
    [7] KOCH E C. Metal-fluorocarbon based energetic materials [M]. Weinheim: Wiley-VCH, 2012.
    [8] JOSHI V S. Process for making polytetrafluoroethylene-aluminum composite and product made: US 6547993B1 [P]. 2003-04-15.
    [9] 阳世清, 徐松林, 张彤. PTFE/Al反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42; 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.

    YANG S Q, XU S L, ZHANG T. Preparation and performance of PTEF/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42; 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.
    [10] NIELSON D B, TANNER R L, LUND G K. High strength reactive materials: US20030096897A1 [P]. 2003-05-22.
    [11] 于钟深, 方向, 高振儒, 等. TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响 [J]. 含能材料, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.

    YU Z S, FANG X, GAO Z R, et al. Effect of TiH2 content on mechanical properties and reaction characteristics of Al/PTFE under quasi-static compression [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
    [12] FENG B, FANG X, WANG H F, et al. The effect of crystallinity on compressive properties of Al-PTFE [J]. Polymers, 2016, 8(10): 356. DOI: 10.3390/polym8100356.
    [13] WANG L, LIU J X, LI S K, et al. Investigation on reaction energy, mechanical behavior and impact insensitivity of W-PTFE-Al composites with different W percentage [J]. Materials and Design, 2016, 92: 397–404. DOI: 10.1016/j.matdes.2015.12.045.
    [14] GE C, YU Q B, ZHANG H, et al. On dynamic response and fracture-induced initiation characteristics of aluminum particle filled PTFE reactive material using hat-shaped specimens [J]. Materials and Design, 2020, 188: 108472. DOI: 10.1016/j.matdes.2020.108472.
    [15] REN H L, LI W, NING J G, et al. The influence of initial defects on impact ignition of aluminum/polytetrafluoroethylene reactive material [J]. Advanced Engineering Materials, 2020, 22(3): 1900821. DOI: 10.1002/adem.201900821.
    [16] WANG H F, ZHENG Y F, YU Q B, et al. Impact-induced initiation and energy release behavior of reactive materials [J]. Journal of Applied Physics, 2011, 110(7): 074904. DOI: 10.1063/1.3644974.
    [17] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [18] XIONG W, ZHANG X F, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004.
    [19] WANG Y, JIANG W, ZHANG X F, et al. Energy release characteristics of impact-initiated energetic aluminum–magnesium mechanical alloy particles with nanometer-scale structure [J]. Thermochimica Acta, 2011, 512(1/2): 233–239. DOI: 10.1016/j.tca.2010.10.013.
    [20] LI Y, JIANG C L, WANG Z C, et al. Experimental study on reaction characteristics of PTFE/Ti/W energetic materials under explosive loading [J]. Materials, 2016, 9(11): 936. DOI: 10.3390/ma9110936.
    [21] LEE J H S, GOROSHIN S, YOSHINAKA A, et al. Attempts to initiate detonations in metal-sulphur mixtures [J]. AIP Conference Proceedings, 2000, 505(1): 775–778. DOI: 10.1063/1.1303587.
    [22] GUR’EV D L, GORDOPOLOV Y A, BATSANOV S S, et al. Solid-state detonation in the zinc-sulfur system [J]. Applied Physics Letters, 2006, 88(2): 024102. DOI: 10.1063/1.2164411.
    [23] DOLGOBORODOV A Y, MAKHOV M N, KOLBANEV I V, et al. Detonation in an aluminum-Teflon mixture [J]. Journal of Experimental and Theoretical Physics Letters, 2005, 81(7): 311–314. DOI: 10.1134/1.1944069.
    [24] ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 123501. DOI: 10.1063/1.4729048.
    [25] 赵锋, 孙承纬, 卫玉章, 等. 梯恩梯/黑索今(35/65)炸药的反应速率函数 [J]. 爆炸与冲击, 1989, 9(4): 338–347.

    ZHAO F, SUN C W, WEI Y Z, et al. Reaction rates of TNT/RDX(35/65) explosive [J]. Explosion and Shock Waves, 1989, 9(4): 338–347.
    [26] LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. The Physics of Fluids, 1980, 23(12): 2362–2372. DOI: 10.1063/1.862940.
    [27] 李军宝, 李伟兵, 汪衡, 等. 爆炸载荷下铝粉与橡胶复合材料中的冲击波传播特性 [J]. 兵工学报, 2020, 41(10): 2001–2007. DOI: 10.3969/j.issn.1000-1093.2020.10.009.

    LI J B, LI W B, WANG H, et al. Propagation properties of shock wave in aluminum powder/rubber composites under explosion loading [J]. Acta Armamentarii, 2020, 41(10): 2001–2007. DOI: 10.3969/j.issn.1000-1093.2020.10.009.
    [28] 李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003.
    [29] 许世昌. 双层含能药型罩射流成型机理及侵彻性能研究 [D]. 南京: 南京理工大学, 2015: 29.

    XU S C. Study on jet forming mechanism and penetration performance of double layer liners comprised of reactive material [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2015: 29
    [30] 郭俊. 活性分段动能杆对混凝土靶的毁伤效应研究 [D]. 北京: 北京理工大学, 2016: 94.

    GUO J. Damage of concrete target induced by reactive segmented kinetic rods [D]. Beijing, China: Beijing Institute of Technology, 2016: 94
    [31] JIANG J W, WANG S Y, ZHANG M, et al. Modeling and simulation of JWL equation of state for reactive Al/PTFE mixture [J]. Journal of Beijing Institute of Technology, 2012, 21(2): 150–156. DOI: 10.15918/j.jbit1004-0579.2012.02.003.
    [32] RAFTENBERG M N, MOCK W JR, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. DOI: 10.1016/j.ijimpeng.2008.07.041.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  208
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-22
  • 修回日期:  2022-01-21
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2022-06-24

目录

    /

    返回文章
    返回