水下针-板放电气泡脉动及冲击特性

张思远 刘征 王志强 王进君 李国锋

张思远, 刘征, 王志强, 王进君, 李国锋. 水下针-板放电气泡脉动及冲击特性[J]. 爆炸与冲击, 2022, 42(7): 072201. doi: 10.11883/bzycj-2021-0421
引用本文: 张思远, 刘征, 王志强, 王进君, 李国锋. 水下针-板放电气泡脉动及冲击特性[J]. 爆炸与冲击, 2022, 42(7): 072201. doi: 10.11883/bzycj-2021-0421
ZHANG Siyuan, LIU Zheng, WANG Zhiqiang, WANG Jinjun, LI Guofeng. Underwater needle-plate electrical bubble pulsation and impact characteristics[J]. Explosion And Shock Waves, 2022, 42(7): 072201. doi: 10.11883/bzycj-2021-0421
Citation: ZHANG Siyuan, LIU Zheng, WANG Zhiqiang, WANG Jinjun, LI Guofeng. Underwater needle-plate electrical bubble pulsation and impact characteristics[J]. Explosion And Shock Waves, 2022, 42(7): 072201. doi: 10.11883/bzycj-2021-0421

水下针-板放电气泡脉动及冲击特性

doi: 10.11883/bzycj-2021-0421
基金项目: 国家自然科学基金(51607023)
详细信息
    作者简介:

    张思远(1996- ),男,硕士,1390853614@mail.dlut.edu.cn

    通讯作者:

    王志强(1983- ),男,博士,副教授,wangzq@dlut.edu.cn

  • 中图分类号: O389

Underwater needle-plate electrical bubble pulsation and impact characteristics

  • 摘要: 为明确水中脉冲放电能量释放过程所产生气泡的脉动和压力波冲击特性,依据能量等效原则,在LS-DYNA软件中建立针-板电极结构的水下爆轰模型,模拟气泡形态。通过与获取的物理图像比对,发现气泡形态和时间演化尺度高度一致。在此基础上,对气泡的冲击特性进一步分析,结果表明:冲击波峰值、气泡脉动周期和半径大小随放电能量增加而加大,随静水压力的增加而减小;当放电电压由14 kV增至20 kV,二次压力波峰值由2.89 MPa升至4.09 MPa,提高41.5%;当静水压力由202.65 kPa增至506.63 kPa,二次压力波峰值从5.15 MPa升至6.36 MPa,提高23.5%,放电能量和水压的增加对二次压力波提升明显;随着距离增加,二次压力波所占冲击波的峰值压力比重,由12.6%增加至35.3%,远场放电位置二次压力波不可忽视。
  • 图  1  水下气泡脉动及压力释放过程

    Figure  1.  Underwater bubble pulsation and pressure release process

    图  2  针-板式水下脉冲放电系统

    Figure  2.  Needle-plate type underwater pulse discharge system

    图  3  20.8 kV电压放电波形

    Figure  3.  Voltage discharge waveforms of 20.8 kV

    图  4  不同网格尺寸冲击波峰压随相对距离变化

    Figure  4.  Variation of shock wave peak pressure with relative distance for different grid sizes

    图  5  针-板式反应器结构

    Figure  5.  Needle-plate reactor structure

    图  6  有限元模型

    Figure  6.  Finite element model

    图  7  针-板式电极放电气泡脉动实验和数值模拟结果对比

    Figure  7.  Comparison of experimental and simulation results of bubble pulsation of needle-plate electrode discharge

    图  8  实验与数值模拟的气泡半径演化曲线

    Figure  8.  Experimental and simulated bubble radius time evolution curves

    图  9  气泡半径随时间的变化

    Figure  9.  Variations of bubble radius with time

    图  10  气泡脉动、收缩速度曲线

    Figure  10.  Bubble pulsation, shrinkage speed curves

    图  11  水中压力分布

    Figure  11.  Pressure distributions in water

    图  12  刚性底座垂向冲击波压力曲线

    Figure  12.  Rigid base vertical shock wave pressure curves

    图  13  峰值压力随距离的变化

    Figure  13.  Peak pressure variation with distance

    图  14  气泡最大半径边界处压力曲线

    Figure  14.  Pressure curve at the level of 3 cm from the source of the explosion

    表  1  不同电压等级下注入效率

    Table  1.   Injection efficiency at different voltage levels

    电压/kV总能量/J有效能量/J注入效率/%
    16.3106.319.518.3
    16.9114.216.214.2
    17.9128.218.014.0
    19.1145.923.115.8
    19.9158.425.416.1
    20.8173.126.015.0
    下载: 导出CSV

    表  2  TNT炸药状态方程参数设置

    Table  2.   TNT explosive equation of state parameter setting

    材料ρ/(g·cm−3)D/(m·s−1)E0/(kJ·kg−1)pCJ /GPaA/GPaB/GPaR1R2ω
    TNT1.636930800021371.23.2314.150.950.3
    下载: 导出CSV

    表  3  水状态方程参数设置

    Table  3.   Water state equation parameter setting

    材料ρ/(g·cm−3)c/(m·s−1)E0/(kJ·kg−1)S1S2S3γ0
    0.99814802052.56−1.9861.2260.5
    下载: 导出CSV

    表  4  数值模拟与计算结果对比

    Table  4.   Comparison of numerical simulation and calculation results

    网格尺寸/cmBubble pulse pmax/MPa
    Rmax/cmT/ms r=6 r=12 r=18 r=24
    0.2523.947.5 268.0 94.2 57.1 38.3计算结果
    0.2525.850.1 244.586.755.239.8理论结果
    偏差−7.3%−5.2%9.6%8.7%3.4%−3.7%
    下载: 导出CSV

    表  5  不同放电能量、静水压力对应放电条件

    Table  5.   Different discharge energy, the hydrostatic pressure corresponding to the discharge conditions

    放电条件电压/kV静水压力/kPa等效放电能量/J放电条件 电压/kV静水压力/kPa等效放电能量/J
    114101.3210.435 20202.6521.28
    216101.3213.626 20303.9821.28
    318101.3217.247 20405.3021.28
    420101.3221.288 20506.6321.28
    下载: 导出CSV

    表  6  不同放电条件下对应气泡半径和气泡脉动周期

    Table  6.   Bubble radii and pulsation periods under different discharge conditions

    放电能量变化 静水压力变化
    放电条件脉动周期/ms 最大半径/cm放电条件 脉动周期/ms 最大半径/cm
    一次脉动二次脉动 一次脉动二次脉动一次脉动二次脉动 一次脉动二次脉动
    14.083.782.261.875 2.942.702.251.89
    24.454.042.482.096 2.141.971.921.61
    34.774.212.702.267 1.711.551.721.43
    45.044.512.842.4081.441.281.561.30
    下载: 导出CSV
  • [1] YAN D, BIAN D C, ZHAO J C, et al. Study of the electrical characteristics, shock-wave pressure characteristics, and attenuation law based on pulse discharge in water [J]. Shock and Vibration, 2016(5). DOI: 10.1155/2016/6412309.
    [2] OSHITA D, HOSSEINI S H R, OKUKA Y, et al. Characteristic of cavitation bubbles and shock waves generated by pulsed electric discharges with different voltages [C]// 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC). USA: San Diego, 2012: 102–105. DOI: 10.1109/IPMHVC.2012.6518690.
    [3] HIGA O, MATSUBARA R, HIGA K, et al. Mechanism of the shock wave generation and energy efficiency by underwater discharge [J]. The International Journal of Multiphysics, 2012, 6(2): 89–97. DOI: 10.1260/1750-9548.6.2.89.
    [4] COLE P. 水下爆炸 [M]. 罗耀杰, 译. 北京: 国防工业出版社, 1960: 2–6.
    [5] 孙冰. 液相放电等离子体及其应用 [M]. 北京: 科学出版社, 2013: 120–127.
    [6] 李显东, 刘毅, 李志远, 等. 不均匀电场下水中脉冲放电观测及沉积能量对激波的影响 [J]. 中国电机工程学报, 2017, 37(10): 3028–3036. DOI: 10.13334/j.0258-8013.pcsee.160315.

    LI X D, LIU Y, LI Z Y, et al. Observation of underwater pulse discharge and influence of deposited energy on shock wave in non-uniform electric Field [J]. Proceedings of the CSEE, 2017, 37(10): 3028–3036. DOI: 10.13334/j.0258-8013.pcsee.160315.
    [7] LI N, HUANG J G, LEI K Z, et al. The characteristic of the bubble generated by underwater high-voltage discharge [J]. Journal of Electrostatics, 2011, 69(4): 291–295. DOI: 10.1016/j.elstat.2011.04.004.
    [8] ZOHOOR M, MOUSAVI S M. Experimental analysis and smoothed particle hydrodynamics modeling of electrohydraulic forming of sheet metal parts [J]. Journal of Manufacturing Processes, 2018, 35(10): 16–28. DOI: 10.1016/j.jmapro.2018.06.039.
    [9] MAMUTOV A V, GOLOVASHCHENKO S F, MAMUTOV V S, et al. Modeling of electrohydraulic forming of sheet metal parts [J]. Journal of Materials Processing Tech, 2015, 219: 84–100. DOI: 10.1016/j.jmatprotec.2014.11.045.
    [10] HIDEKI H, SEISAKU I, HIRONORI M, et al. Propagation of underwater shock wave and gas bubble behavior induced by electrical discharge in water [J]. Applied Mechanics and Materials, 2014, 566: 403–408. DOI: 10.4028/www.scientific.net/AMM.566.403.
    [11] CHANG J S, URASHIMA K, UCHIDA Y, et al. Characteristics of pulsed arc electrohydraulic discharges and their application to water treatments [J]. Tokyo Denki University Engineering Research, 2002, 50(11): 1–12.
    [12] KOSENKOV V M, BYCHKOV V M. Influence of some axially symmetric stepped forms of discharge chambers on the efficiency of electrohydraulic forming [J]. Surface Engineering and Applied Electrochemistry, 2019, 55(1): 89–96. DOI: 10.3103/S1068375519010113.
    [13] 刘毅, 李志远, 李显东, 等. 水中脉冲激波对模拟岩层破碎试验 [J]. 电工技术学报, 2016, 31(24): 71–78. DOI: 10.19595/j.cnki.1000-6753.tces.2016.24.008.

    LIU Y, LI Z Y. LI X D, et al. Experiments on the fracture of simulated stratum by underwater pulsed discharge shock waves [J]. Transactions of China Electrotechnical Society, 2016, 31(24): 71–78. DOI: 10.19595/j.cnki.1000-6753.tces.2016.24.008.
    [14] 王志强, 曹云霄, 邢政伟, 等. 高压脉冲放电破碎菱镁矿石的实验研究 [J]. 电工技术学报, 2019, 34(4): 863–870. DOI: 10.19595/j.cnki.1000-6753.tces.180109.

    WANG Z Q, CAO Y X, XING Z W, et al. Experimental study on fragmentation of magnesite ores by pulsed high-voltage discharge [J]. Transactions of China Electrotechnical Society, 2019, 34(4): 863–870. DOI: 10.19595/j.cnki.1000-6753.tces.180109.
    [15] 刘毅, 李志远, 李显东, 等. 水中大电流脉冲放电激波影响因素分析 [J]. 中国电机工程学报, 2017, 37(9): 2741–2749. DOI: 10.13334/j.0258-8013.pcsee.160417.

    LIU Y, LI Z Y, LI X D, et al. Effect factors of the characteristics of shock waves induced by underwater high current pulsed discharge [J]. Proceedings of the CSEE, 2017, 37(9): 2741–2749. DOI: 10.13334/j.0258-8013.pcsee.160417.
    [16] 刘强, 孙鹞鸿. 水中脉冲电晕放电等离子体特性及气泡运动 [J]. 高电压技术, 2006, 32(2): 54–56. DOI: 10.13336/j.1003-6520.hve.2006.02.022.

    LIU Q, SUN Y H. Plasma characteristics of pulsed corona discharge in water and moving process of the bubble [J]. High Voltage Engineering, 2006, 32(2): 54–56. DOI: 10.13336/j.1003-6520.hve.2006.02.022.
    [17] 刘振, 管显涛, 张允, 等. 水下放电同相位多气泡动力学实验研究 [J]. 高电压技术, 2021, 47(9): 3337–3345. DOI: 10.13336/j.1003-6520.hve.20201146.

    LIU Z, GUAN X T, ZHANG Y, et al. Experimental study on the dynamics of multiple bubbles in the same phase of underwater discharge [J]. High Voltage Engineering, 2021, 47(9): 3337–3345. DOI: 10.13336/j.1003-6520.hve.20201146.
    [18] 荀涛, 杨汉武, 张建德, 等. 加速器电水锤数值模拟与实验研究 [J]. 强激光与粒子束, 2010, 22(2): 425–429. DOI: 10.3788/HPLPB20102202.0425.

    XUN T, YANG H W, ZHANG J D, et al. Numerical and experimental investigation on water shocks due to pulsed discharge in accelerators [J]. High Power Laser and Particle Beams, 2010, 22(2): 425–429. DOI: 10.3788/HPLPB20102202.0425.
    [19] LI X W, Chao Y C, Wu J, et al. Study of the shock waves characteristics generated by underwater electrical wire explosion [J]. Journal of Applied Physics, 2015, 118(2): 023301. DOI: 10.1063/1.4926374.
    [20] MARTIN E A. Experimental investigation of a high-energy density, high-pressure arc plasma [J]. Journal of Applied Physics, 1960, 31(2): 255–267. DOI: 10.1063/1.1735555.
    [21] 刘明光, 颜怀梁, 温光一. 电水锤效应及其应用 [J]. 四川工业学院学报, 1989, 8(3): 188–193.

    LIU M G, YAN H L, WEN G Y. Electrohydraulig effect and applications [J]. Sichuan University of Science and Technology, 1989, 8(3): 188–193.
    [22] BLUHN H, FREY W, GIESE H, et al. Application of pulsed HV discharges to material fragmentation and recycling [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(5): 625–636. DOI: 10.1109/94.879358.
    [23] 王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.

    WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
    [24] 邓贵德. 离散多层爆炸容器内爆载荷和抗爆特性研究 [D]. 杭州: 浙江大学, 2008: 35–37.
    [25] WANG J, GUO J, YAO X L, et al. Dynamic buckling of stiffened plates subjected to explosion impact loads [J]. Shock Waves, 2017(1): 37–52. DOI: 10.1007/s00193-016-0638-z.
    [26] SILVANO B, GIOVANNI B C. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model [J]. The Journal of the Acoustical Society of America, 2002, 111(6): 2594–2600. DOI: 10.1121/1.1476919.
    [27] MOEZZI-RAFIE H, NASIRI M M. An investigation on the flow physics of bubble implosion using numerical techniques [J]. Ocean Engineering, 2018, 153(4): 185–192. DOI: 10.1016/j.oceaneng.2018.01.094.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  123
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2022-03-28
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回