航行体开槽包裹式缓冲头帽结构设计及其降载性能

施瑶 刘振鹏 潘光 高兴甫

施瑶, 刘振鹏, 潘光, 高兴甫. 航行体开槽包裹式缓冲头帽结构设计及其降载性能[J]. 爆炸与冲击, 2022, 42(12): 123901. doi: 10.11883/bzycj-2021-0426
引用本文: 施瑶, 刘振鹏, 潘光, 高兴甫. 航行体开槽包裹式缓冲头帽结构设计及其降载性能[J]. 爆炸与冲击, 2022, 42(12): 123901. doi: 10.11883/bzycj-2021-0426
SHI Yao, LIU Zhenpeng, PAN Guang, GAO Xingfu. Structural design of a slotted wrapping buffer head cap of vehicles and its load reduction performance[J]. Explosion And Shock Waves, 2022, 42(12): 123901. doi: 10.11883/bzycj-2021-0426
Citation: SHI Yao, LIU Zhenpeng, PAN Guang, GAO Xingfu. Structural design of a slotted wrapping buffer head cap of vehicles and its load reduction performance[J]. Explosion And Shock Waves, 2022, 42(12): 123901. doi: 10.11883/bzycj-2021-0426

航行体开槽包裹式缓冲头帽结构设计及其降载性能

doi: 10.11883/bzycj-2021-0426
基金项目: 国家自然科学基金(U21B2055,52171324);中央高校基本科研业务费(3102019JC006)
详细信息
    作者简介:

    施 瑶(1988- ),男,博士,副研究员,shiyao@nwpu.edu.cn

  • 中图分类号: O352

Structural design of a slotted wrapping buffer head cap of vehicles and its load reduction performance

  • 摘要: 针对空投航行体和火箭助飞航行体高速入水过程中遭受巨大的冲击载荷,可能导致的结构损坏、弹道失控等问题,提出了一种开槽包裹式缓冲头帽,用于保护航行体入水过程中的结构安全。首先,给出了缓冲头帽的详细设计参数,基于任意拉格朗日-欧拉算法,建立了航行体带缓冲头帽高速入水数值模型,并对该数值模型的正确性进行了验证。然后,在此基础上,研究了不同入水角度下,空泡流场的演变过程,分析了入水时缓冲材料的应力分布情况。最后,探究了不同入水速度和入水角度下缓冲头帽的降载性能。结果表明,数值计算所得空泡形态与实验图像基本吻合,且数值计算和实验测试所得的冲击加速度变化趋势基本一致,两者轴向加速度峰值相对误差为6.72%,径向加速度峰值相对误差为7.52%。航行体装备所设计的缓冲头帽以300 m/s的速度垂直入水时轴向降载率为22.17%;以100 m/s的速度60°入水时,轴向降载率为31.83%,径向降载率为66.80%。
  • 图  1  航行体外形

    Figure  1.  Shape of the vehicle

    图  2  罩壳外形

    Figure  2.  Shape of the nose cap

    图  3  罩壳开槽示意图

    Figure  3.  Schematic diagrams of the slotted nose cap

    图  4  开槽包裹式缓冲件

    Figure  4.  A slotted wrapping buffer

    图  5  航行体装配缓冲头帽后整体

    Figure  5.  The whole body of the vehicle assembled with the buffer head cap

    图  6  流固耦合算法

    Figure  6.  Algorithm of fluid-structure interaction

    图  7  坐标系的定义

    Figure  7.  Definition of coordinate systems

    图  8  不同网格尺寸下的加速度系数及其峰值

    Figure  8.  Time history curves of acceleration coefficient and its peaks under different mesh sizes

    图  9  计算域

    Figure  9.  Computational domain

    图  10  实验现场布局

    Figure  10.  Experimental layout

    图  11  数值计算与实验空泡的对比

    Figure  11.  Comparison of cavities between simulation and experiment

    图  12  数值计算与实验测试加速度的对比

    Figure  12.  Comparison of accelerations between simulation and experiment

    图  13  航行体以100 m/s、90°入水时流场演化和缓冲件的破坏过程(隐藏罩壳)

    Figure  13.  Flow field evolution and failure process of buffer when the vehicle enters water at 100 m/s and 90° (hide the nose cap)

    图  14  航行体以100 m/s、60°入水时流场演化和缓冲件的破坏过程(隐藏罩壳)

    Figure  14.  Flow field evolution and failure process of buffer when the vehicle enters water at 100 m/s and 60° (hide the nose cap)

    图  15  航行体以100 m/s的速度在不同入水角度下20 ms时水体的速度矢量

    Figure  15.  Vectors of velocity of the water when the vehicle enters water at 100 m/s and different angles at 20 ms

    图  16  航行体以100 m/s、90°入水角入水时缓冲材料的等效应力分布

    Figure  16.  Distribution of effective stress of the buffer when the vehicle enters water at 100 m/s and 90°

    图  17  航行体以100 m/s、60°入水角入水时缓冲材料的等效应力分布

    Figure  17.  Distribution of effective stress of the buffer when the vehicle enters water at 100 m/s and 60°

    图  18  不同的航行体以不同入水速度垂直入水时的加速度时程曲线

    Figure  18.  Time-history curves of acceleration when different vehicles enter water vertically at different velocities

    图  19  不同的航行体以100 m/s的速度在不同入水角度下的轴向加速度时程曲线

    Figure  19.  Time-history curves of axial acceleration when different vehicles enter water at 100 m/s and different angles

    图  20  不同的航行体以100 m/s的速度在不同入水角度下的径向加速度时程曲线

    Figure  20.  Time-history curves of radial acceleration when different vehicles enter water at 100 m/s and different angles

  • [1] 郑强, 杨日杰, 陈佳琪, 等. 直升机空投鱼雷的散布误差研究 [J]. 科学技术与工程, 2017, 17(15): 65–70. DOI: 10.3969/j.issn.1671-1815.2017.15.009.

    ZHENG Q, YANG R J, CHEN J Q, et al. Research on dispersion errors of helicopter’s airdrop torpedo [J]. Science Technology and Engineering, 2017, 17(15): 65–70. DOI: 10.3969/j.issn.1671-1815.2017.15.009.
    [2] 温志文, 杨智栋, 王力竟. 空投鱼雷系统建模与空中弹道仿真研究 [J]. 弹箭与制导学报, 2019, 39(5): 63–66,72. DOI: 10.15892/j.cnki.djzdxb.2019.05.015.

    WEN Z W, YANG Z D, WANG L J. Modeling of the air-dropped torpedo system and the simulation research of the air trajectory [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(5): 63–66,72. DOI: 10.15892/j.cnki.djzdxb.2019.05.015.
    [3] 潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体人水缓冲机制研究 [J]. 工程热物理学报, 2015, 36(8): 1691–1695.

    PAN L, WANG H R, Yao E R, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder [J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691–1695.
    [4] 刘华坪, 余飞鹏, 韩冰, 等. 头部喷气影响航行体入水载荷的数值模拟 [J]. 工程热物理学报, 2019, 40(2): 300–305.

    LIU H P, YU F P, HAN B, et al. Numerical simulation study on influence of top jet in object water entering impact [J]. Journal of Engineering Thermophysics, 2019, 40(2): 300–305.
    [5] 赵海瑞, 施瑶, 潘光. 头部喷气航行器高速入水空泡特性数值分析 [J]. 西北工业大学学报, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.

    ZHAO H R, SHI Y, PAN G. Numerical simulation of cavitation characteristics in high speed water entry of head-jetting underwater vehicle [J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 810–817. DOI: 10.1051/jnwpu/20213940810.
    [6] 陈洋, 吴亮, 曾国伟, 等. 带环形密闭气囊弹体入水冲击过程的数值分析 [J]. 爆炸与冲击, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.

    CHEN Y, WU L, ZENG G W, et al. Numerical analysis of the water entry process of a projectile with a circular airbag [J]. Explosion and Shock Waves, 2018, 38(5): 1155–1164. DOI: 10.11883/bzycj-2017-0387.
    [7] 严忠汉. 入水弹头缓冲器特性探讨 [J]. 水动力学研究与进展, 1987(1): 112–121. DOI: 10.16076/j.cnki.cjhd.1987.01.012.

    YAN Z H. An approach to the behavior of water-entry missile’s mitigator [J]. Advances in Hydrodynamics, 1987(1): 112–121. DOI: 10.16076/j.cnki.cjhd.1987.01.012.
    [8] 王永虎, 石秀华, 王鹏. 雷弹入水冲击动态缓冲性能分析 [J]. 西北工业大学学报, 2009, 27(5): 707–712. DOI: 10.3969/j.issn.1000-2758.2009.05.023.

    WANG Y H, SHI X H, WANG P. Exploring analysis of dynamic cushioning properties of water-entry missile’s shock mitigator [J]. Journal of Northwestern Polytechnical University, 2009, 27(5): 707–712. DOI: 10.3969/j.issn.1000-2758.2009.05.023.
    [9] HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. Journal of Computational Physics, 1974, 14(3): 227–253. DOI: 10.1016/0021-9991(74)90051-5.
    [10] WANG H, ZHAO F, CHENG Y S, et al. Dynamic response analysis of light weight pyramidal sandwich plates subjected to water impact [J]. Polish Maritime Research, 2012, 19(4): 31–43. DOI: 10.2478/v10012-012-0038-y.
    [11] 李建阳, 邢伟, 宋世鹏, 等. 舱体入水工况参数对冲击特性的影响分析 [J]. 宇航总体技术, 2019, 3(4): 49–55.

    LI J Y, XING W, SONG S P, et al. Analysis of effects of water entry condition parameters on impact characteristics of recovery module [J]. Astronautical Systems Engineering Technology, 2019, 3(4): 49–55.
    [12] 胡明勇, 张志宏, 刘巨斌, 等. 低亚声速射弹垂直入水的流体与固体耦合数值计算研究 [J]. 兵工学报, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.

    HU M Y, ZHANG Z H, LIU J B, et al. Fluid-solid coupling numerical simulation on vertical water entry of projectile at low subsonic speed [J]. Acta Armamentrii, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.
    [13] 颜彬, 钱韬, 马赛尔. 火箭助飞式器材高速入水冲击结构响应分析 [J]. 弹箭与制导学报, 2018, 38(5): 65–68,72. DOI: 10.15892/j.cnki.djzdxb.2018.05.016.

    YAN B, QIAN T, MA S E. Analysis for structure response to water entry impact for rocket-assisted equipment at high-speed [J]. Journal of Projectile, Rockets, Missiles and Guidance, 2018, 38(5): 65–68,72. DOI: 10.15892/j.cnki.djzdxb.2018.05.016.
    [14] WU S Y, SHAO Z Y, FENG S S, et al. Water-entry behavior of projectiles under the protection of polyurethane buffer head [J]. Ocean Engineering, 2020, 197: 106890. DOI: 10.1016/j.oceaneng.2019.106890.
    [15] LI Y, ZONG Z, SUN T Z. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity [J]. Composite Structures, 2021, 255: 112883. DOI: 10.1016/j.compstruct.2020.112883.
    [16] 魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究 [J]. 爆炸与冲击, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.

    WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method [J]. Explosion and Shock Waves, 2021, 41(10): 104201. DOI: 10.11883/bzycj-2020-0461.
    [17] 钱立新, 刘飞, 屈明, 等. 鱼雷头罩入水破坏模式研究 [J]. 鱼雷技术, 2015, 23(4): 257–261.

    QIAN L X, LIU F, QU M, et al. Failure mode of torpedo nose cap in water-entry [J]. Torpedo Technology, 2015, 23(4): 257–261.
    [18] 王泽鹏, 胡仁喜, 康士廷, 等. ANSYS 13.0 LS-DYNA非线性有限元分析实例[M]. 2版. 北京: 机械工业出版社, 2011: 348–349.
    [19] 尚晓江, 苏建宇, 王化峰, 等. ANSYS LS-DYNA动力分析方法与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2008: 141.
    [20] 潘光, 杜晓旭, 宋保维, 等. 鱼雷力学[M]. 西安: 陕西师范大学出版社, 2013: 10.
    [21] 霍银磊, 张新昌. 发泡塑料缓冲设计中材料的密度选择 [J]. 塑料工业, 2007(5): 40–43. DOI: 10.3321/j.issn:1005-5770.2007.05.012.

    HUO Y L, ZHANG X C. Density choice of foamed plastics for cushion design [J]. China Plastics Industry, 2007(5): 40–43. DOI: 10.3321/j.issn:1005-5770.2007.05.012.
    [22] 王泽鹏, 胡仁喜, 康士廷, 等. ANSYS 13.0 LS-DYNA非线性有限元分析实例[M]. 2版. 北京: 机械工业出版社, 2011: 63.
    [23] 赵海鸥. LS-DYNA动力分析指南[M]. 北京: 兵器工业出版社, 2003: 167–168.
  • 加载中
图(20)
计量
  • 文章访问数:  412
  • HTML全文浏览量:  153
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-08-10
  • 网络出版日期:  2022-10-26
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回