钨球对高硬度钢斜侵彻效应

张健 徐豫新 刘铁磊 张鹏

张健, 徐豫新, 刘铁磊, 张鹏. 钨球对高硬度钢斜侵彻效应[J]. 爆炸与冲击, 2022, 42(2): 023302. doi: 10.11883/bzycj-2021-0427
引用本文: 张健, 徐豫新, 刘铁磊, 张鹏. 钨球对高硬度钢斜侵彻效应[J]. 爆炸与冲击, 2022, 42(2): 023302. doi: 10.11883/bzycj-2021-0427
ZHANG Jian, XU Yuxin, LIU Tielei, ZHANG Peng. Oblique penetration effect of a tungsten ball on high hardness steel[J]. Explosion And Shock Waves, 2022, 42(2): 023302. doi: 10.11883/bzycj-2021-0427
Citation: ZHANG Jian, XU Yuxin, LIU Tielei, ZHANG Peng. Oblique penetration effect of a tungsten ball on high hardness steel[J]. Explosion And Shock Waves, 2022, 42(2): 023302. doi: 10.11883/bzycj-2021-0427

钨球对高硬度钢斜侵彻效应

doi: 10.11883/bzycj-2021-0427
基金项目: 基础加强计划重点基础研究项目(2019); 重庆市自然科学基金(cstc2020jcyj-msxmX0722)
详细信息
    作者简介:

    张 健(1995- ),男,硕士研究生,zhangjian8791@163.com

    通讯作者:

    徐豫新(1982- ),男,博士,副教授,xuyuxin@bit.edu.cn

  • 中图分类号: O385

Oblique penetration effect of a tungsten ball on high hardness steel

  • 摘要: 为研究高硬度钢板抗不同着角钨球的侵彻性能及破坏模式,通过弹道枪进行了$ \varnothing $8 mm、$ \varnothing $11 mm钨合金球形破片以0°、20°、40°着角撞击厚度为6 mm、8 mm的高硬度钢板试验,得到了极限贯穿速度v50;分析了钨球轴向径向变形及靶板失效模式与撞击速度的关系,发现高硬度钢板失效模式主要为压缩开坑破坏和沿厚度方向剪切破坏。采用有限元方法对试验进行了模拟,验证了数值模型及参数的合理性,并运用数值模拟方法研究了撞击着角对靶板吸能模式影响,结合试验数据,修正已有极限贯穿速度计算公式。结果表明:随侵彻着角增大,极限贯穿速度提高,且着角越大,极限贯穿速度增长越快;随着角增大,靶板吸能模式逐渐由压缩开坑向剪切冲塞过渡,且着角大于50°时,剪切冲塞耗能将超过压缩开坑耗能;修正后极限贯穿速度计算公式适用范围更广、精度更高,具有较好工程应用价值。
  • 图  1  试验装置布设

    Figure  1.  Schematic of setup for test

    图  2  22SiMn2TiB静态拉伸试验前后试样对比

    Figure  2.  Comparison of 22SiMn2TiB samples before and after static tensile test

    图  3  0°着角试验典型破坏形貌

    Figure  3.  Typical failure morphologies of 0 ° impact angle test

    图  4  钨球变形率随撞击速度变化趋势

    Figure  4.  Deformation ratio of tungsten ball varied with impact velocity

    图  5  20°着角试验靶板典型破坏形貌

    Figure  5.  Typical failure morphologies of targets with 20° angle

    图  6  回收塞块和钨球典型破坏形貌

    Figure  6.  Typical failure morphologies of Plug block and recovered tungsten ball

    图  7  40°着角试验靶板典型破坏形貌

    Figure  7.  Typical failure morphologies of targets with 40° angle

    图  8  回收塞块和钨球典型破坏形貌

    Figure  8.  Typical failure morphologies of plug block and recovered tungsten ball

    图  9  撞击靶板贯穿极限速度与着角关系曲线

    Figure  9.  Ultimate penetration velocity-impact angle curve

    图  10  数值模型

    Figure  10.  Simulation model

    图  11  靶板破坏模式数值模拟与试验对比

    Figure  11.  Comparison of target failure modes between simulation and test

    图  12  斜侵彻过程典型von Mises应力变化

    Figure  12.  Typical von Mises stress variation during oblique penetration

    图  13  靶板吸能随撞击着角变化趋势

    Figure  13.  Variation trend of energy absorption of target plate with impact angle

    图  14  试验结果和计算结果对比

    Figure  14.  Comparison between test and calculated results

    表  1  试验用93W4Ni3Fe合金破片材料基本力学性能

    Table  1.   Basic mechanical properties of missile target materials for test

    材料ρ/(g·cm−3)E/GPaσy/MPaσs/MPaδ/%HRC
    93W4Ni3Fe17.736573195519~2229
    下载: 导出CSV

    表  2  试验用22SiMn2TiB靶板材料基本力学性能

    Table  2.   Basic mechanical properties of 22SiMn2TiB target material for test

    材料h/mm试验编号ρ/( g·cm−3)E/GPaσy/MPaσs/MPaδ/%HRC
    22SiMn2TiB 6Test 17.781197.2031083.01516.512.6046.8
    Test 2197.3421068.51516.912.6446.4
    Test 3196.9831081.61514.312.1646.5
    Test 4186.6851080.41508.812.9246.4
    8Test 17.785186.7461110.21569.914.4046.2
    Test 2188.3511080.51563.114.5246.2
    Test 3192.6031113.71574.115.9246.0
    Test 4190.6621072.41563.314.8446.8
    平均7.783192.0701086.31540.913.7546.4
    下载: 导出CSV

    表  3  钨球撞击22SiMn2TiB钢板的极限贯穿速度

    Table  3.   Expermental results of tungsten balls impacting 22SiMn2TiB steel plates

    h/mmd/mmθ/(°)v/(m·s−1)是否穿透v50/( m·s−1)h/mmd/mmθ/(°)v/(m·s-1)是否穿透v50/( m·s-1)
    6.238.000434.15480.808.270460.83615.47
    566.04561.80
    518.13569.26
    466.56608.52
    495.05622.41
    20574.71485.85607.45
    483.09820728.16624.52
    488.60702.58
    40468.02619.68692.84
    636.94614.75
    602.41560.75
    6.2311.060361.01376.91563.27
    371.75634.29
    369.4640649.35798.02
    406.50755.67
    20427.96389.13821.92
    355.03808.63
    404.31740.74
    363.2 787.40
    390.638.2711.060459.49444.00
    40574.71481.74428.57
    460.12473.19
    503.3620549.45475.87
    452.49461.54
    510.20
    490.20
    40606.06575.6
    561.80
    589.39
    下载: 导出CSV

    表  4  弹靶材料Johnson-Cook模型参数

    Table  4.   Johnson-Cook model parameters of 22SiMn2TiB steel and 93W4Ni3Fe

    材料ρ/(g·cm−3)G/GPaA/GPaB/GPaCMn
    22SiMn2TiB7.7881.81.0860.510.0141.030.26
    93W4Ni3Fe17.71600.7311.670.030.820.91
    下载: 导出CSV

    表  5  弹靶材料状态方程参数[12-13]

    Table  5.   State equation parameters of 22SiMn2TiB steel and 93W4Ni3Fe[12-13]

    材料c/(m·s−1)S1S2S3γ0A
    22SiMn2TiB46001.730001.670.46
    93W4Ni3Fe40461.268001.580.46
    下载: 导出CSV

    表  6  撞击靶板贯穿极限速度的数值模拟与试验值对比

    Table  6.   Comparison of ultimate penetration velocity between simulation and test

    θ/(°)钨球初速/(m·s−1是否穿透v50/(m·s−1)
    数值模拟试验相对误差/%
    0480475 480.81.14
    470
    20490485 485.80.16
    480
    40625619.5619.60.02
    614
    下载: 导出CSV

    表  7  钨球撞击靶板过程能量变化

    Table  7.   Energy change during tungsten ball impacting target plate

    θ/(°)E0/kJE1/kJE2/kJE1-0/E0)/%E2-1/E0)/%
    02.721.030.7462.1310.51
    102.781.130.7259.3514.86
    202.841.200.5857.7521.83
    303.541.541.0556.5013.84
    404.622.321.0349.7827.92
    506.394.262.0533.3334.59
    下载: 导出CSV

    表  8  撞击靶板贯穿极限速度的试验与理论值对比

    Table  8.   Comparison of ultimate penetration velocity between experimental and theoretical value

    钨球直径/mm靶板厚度/mm着角/(°)v50/(m·s−1)误差/%
    试验理论
    8.006.2320485.85474.03−3.69
    11.068.2740575.60592.01 2.85
    6.846.75 0610.00604.94−0.83
    8.126.75 0520.30513.08−1.39
    下载: 导出CSV

    表  9  撞击靶板贯穿极限速度的计算值与理论值对比

    Table  9.   Comparison of ultimate penetration velocity between numberical and theoretical value

    钨球直径/mm靶板厚度/mm着角/(°)v50/(m·s−1)误差/%
    计算理论
    8.004.00 0309.50309.89 0.12
    8.003.00 0195.00235.1120.57
    8.002.00 0193.00159.3017.46
    8.006.0010480.00464.26−3.28
    8.006.0030542.00526.51−2.86
    8.006.0050730.00704.89−3.44
    下载: 导出CSV
  • [1] AWERBUCH J, BODNER S R . Analysis of the mechanics of perforation of projectiles in metallic plates [J]. International Journal of Solids & Structures, 1974, 10(6): 671–684.
    [2] 陈志斌, 刘志刚. 球形弹垂直碰撞金属靶板的实验研究 [J]. 弹道学报, 1991, 7(1): 66–70.

    CHEN Z B, LIU Z G. Experimental investigation on the mental target by normal impact of spherical shell [J]. Journal of Ballistics, 1991, 7(1): 66–70.
    [3] 任杰, 徐豫新, 王树山. 超高强度平头圆柱形弹体对低碳合金钢板的高速撞击实验 [J]. 爆炸与冲击, 2017, 37(4): 629–636. DOI: 10.11883/1001-1455(2017)04-0629-08.

    REN J, XU Y X, WANG S S. High-speed impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 629–636. DOI: 10.11883/1001-1455(2017)04-0629-08.
    [4] 陈材, 石全, 尤志锋, 等. 预制破片侵彻靶板临界跳飞角变化规律 [J]. 火力与指挥控制, 2021, 46(5): 29–34. DOI: 10.3969/j.issn.1002-0640.2021.05.006.

    CHEN C, SHI Q, YOU Z F, et al. Change law of critical ricochet angle of prefabricated fragment penetrating target plate [J]. Fire Control & Command Control, 2021, 46(5): 29–34. DOI: 10.3969/j.issn.1002-0640.2021.05.006.
    [5] 姚熊亮, 王治, 叶墡君, 等. 球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型 [J]. 爆炸与冲击, 2021, 41(3): 033301. DOI: 10.11883/bzycj-2020-0092.

    YAO X L, WANG Z, YE S J, et al. A simplified theoretical model for attack angle change of a hemispherically-nosed projectile while penetrating the stiffener of a ship plate frame [J]. Explosion and Shock Waves, 2021, 41(3): 033301. DOI: 10.11883/bzycj-2020-0092.
    [6] 午新民. 钨合金球体对有限厚靶板侵彻的理论与试验研究[D]. 北京: 北京理工大学, 1999.
    [7] 胡邓平, 赵利平, 伍先明, 等. 616装甲防弹钢动态冲击下的性能研究 [J]. 兵器材料科学与工程, 2017, 40(2): 96–99. DOI: 10.19822/j.cnki.1671-6329.20210032.

    HU D P, ZHAO L P, WU X M, et al. Study on the performance of 616 armored ballistic steel under dynamic impact [J]. Ordnance Material Science and Engineering, 2017, 40(2): 96–99. DOI: 10.19822/j.cnki.1671-6329.20210032.
    [8] XU Y X, HAN X G, ZHAO X X, et al. Experimentation research on failure behavior of tungsten alloy penetrating low carbon steel plate at high velocity [J]. Rare Metal Materials and Engineering, 2016, 45(1): 122–126.
    [9] 赵荣贵, 陈林恒, 左秀荣. 超高强度装甲钢抗弹失效机理研究 [J]. 宽厚板, 2020, 26(5): 11–14. DOI: 10.3969/j.issn.1009-7864.2020.05.003.

    ZHAO R G, CHEN L H, ZUO X R. Research on the ballistic failure mechanism of ultra-high strength armored steel [J]. Wide and Heavy Plate, 2020, 26(5): 11–14. DOI: 10.3969/j.issn.1009-7864.2020.05.003.
    [10] 程瑶, 赵太勇, 陈智刚, 等. 低中速钨球变形与速度关系计算模型 [J]. 爆破器材, 2019, 48(5): 52–56. DOI: 10.3969/j.issn.1001-8352.2019.05.010.

    CHENG Y, ZHAO T Y, CHEN Z G, et al. Calculation model of the relationship between deformation and velocity of low and medium speed tungsten ball [J]. Explosive Materials, 2019, 48(5): 52–56. DOI: 10.3969/j.issn.1001-8352.2019.05.010.
    [11] 曹柏桢, 凌玉崑, 蒋浩征, 等. 飞航导弹战斗部与引信[M]. 北京: 中国宇航出版社, 1995: 140-141.
    [12] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain-rates and high temperatures [C]// Proceeding of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983: 541−547.
    [13] 刘铁, 史洪刚, 程新, 等. 钨合金帽型试样的绝热剪切带数值模拟研究 [J]. 兵器材料科学与工程, 2008(2): 75–79. DOI: 10.3969/j.issn.1004-244X.2008.02.020.

    LIU T, SHI H G, CHENG X, et al. Numerical simulations for adiabatic shear bands of WHA in hat specimen [J]. Ordnance Material Science and Engineering, 2008(2): 75–79. DOI: 10.3969/j.issn.1004-244X.2008.02.020.
  • 加载中
图(14) / 表(9)
计量
  • 文章访问数:  577
  • HTML全文浏览量:  341
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2021-11-01
  • 网络出版日期:  2021-12-14
  • 刊出日期:  2022-02-05

目录

    /

    返回文章
    返回