Effects of laser irradiation on the structure and mechanical-electrical properties of graphene oxide thin films
-
摘要: 采用激光烧蚀氧化石墨烯薄膜,可实现其微尺度图案化加工,以应用于微纳米电子器件。但激光冲击下氧化石墨烯薄膜的结构及力、电性能变化直接影响了器件稳定性和可靠性。为研究超高应变率加载对氧化石墨烯薄膜的结构及性能的影响,采用不同功率激光冲击氧化石墨烯薄膜,通过对其表面形貌、化学成分表征揭示薄膜结构的改变机理,通过对薄膜冲击前后的硬度、弹性模量、导电率测试探索合理的激光加工参数。结果表明:在1.14 W功率的二氧化碳激光冲击下,可实现加工区氧化石墨烯薄膜的还原且不造成薄膜烧蚀断裂,其电导率可达到1.727×103 S/m,弹性模量为49.97 GPa,硬度为5.71 GPa。Abstract: Graphene has high specific strength and stiffness, high current-carrier mobility, low resistivity, and even exceptive electromagnetic properties, which is expected as a next-generation micro-nano photoelectric material. However, most research and applications of graphene materials and photoelectric devices are still only in the laboratory stage. On the one hand, limited to current technologies, industrial mass-scale production of high-quality monolayer graphene films is impossible. On the other hand, the micro-scale patterned machining process may bring structural and performance damage to the material, making the stability and reliability of devices difficult to guarantee. In recent years, with the innovation and progress of laser processing technology, the micro-nano-scale patterned processing of graphene oxide (GO) thin films by laser has become a key technology for solving the development of integrated circuits and information communication equipment to precision and miniaturization. The existing achievements mainly focus on the process and method of laser processing graphene materials with different structures, the physical mechanism of interaction between ultrafast laser and monolayer graphene film, etc. The deformation and damage mechanism of graphene films at ultra-high strain rates are still unclear. In particular, the industrial application of micron-scale multilayer reduced graphene oxide (RGO) films has been much widely explored. However, few studies have been conducted on their mechano-thermal and complex physical processes associated with laser shock and the resulting interlayer damage due to the weak interlayer bonding force. To study the effect of ultrahigh strain rate load on the structure and properties of GO films, GO films were prepared by pumping a certain concentration of GO solution onto the membrane. The reduced GO films were obtained by laser ablation with different laser powers. The mechanism of the film’s structural change was revealed by the characterization of its surface morphology and chemical composition. Reasonable laser machining parameters were explored by measuring the hardness, elastic modulus, and conductivity of film before and after impact. The results show that the film can be reduced without ablative fracture under CO2 laser shock at 1.14 W power. Its electrical conductivity can reach 1.727×103 S/m, the elastic modulus is 49.97 GPa, and hardness is 5.71 GPa.
-
Key words:
- laser processing /
- patterned processing /
- electrical conductivity /
- hardness /
- elastic modulus
-
石墨烯材料自2004年被发现以来,得到了广泛而深入的研究。其高比强度、高比刚度、高载流子迁移率、低电阻率等,甚至特殊的电磁性能都相继被发现,并作为下一代微纳米光电材料被寄予厚望[1-3]。但目前对于大多数石墨烯材料和光电器件的性能研究与应用仍仅仅停留在实验阶段。这一方面是由于目前技术尚无法实现高品质单层石墨烯薄膜的工业化批量生产;另一方面,微尺度图案化加工过程对材料带来了结构和性能损伤,使得器件稳定性、可靠性难以保障。近年来,伴随激光加工技术的革新与进步,利用激光对石墨烯薄膜进行微纳尺度图案化加工成为解决集成电路与信息通信设备向精密化、微小化发展的关键技术[4-6]。
刘璇等[7]采用波长为1064 nm的皮秒激光直写还原氧化石墨烯薄膜,成功制得清晰的石墨烯图案。Gonçalves等[8]探讨了对氧化石墨烯(graphene oxide, GO)纸基底的激光直写,使用100 keV电子束创造出纳米级导电线。Guo等[9]利用飞秒激光介导氧化石墨烯带隙剪裁,成功制得底栅石墨烯场效应晶体管。Chen等[10]利用飞秒激光(波长800 nm,脉冲宽度为120 fs)直接写入方式对硅晶圆基板上的氧化石墨烯薄膜进行电极制备。以上研究论证了采用激光烧蚀氧化石墨烯制备微纳电子元器件的可行性[11-13],但对于激光冲击过程中氧化石墨烯薄膜的结构和性能变化关注较少,而这些变化将直接影响器件运行的可靠性与稳定性。本文通过采用不同功率激光冲击氧化石墨烯薄膜,观察其接结构形貌变化及力电性能,尝试探究激光与氧化石墨烯薄膜的深层作用机理,以期提高氧化石墨烯微纳器件的使用性能。
1. 实 验
取氧化石墨烯溶液(2 mg/mL)0.6 mL,加入20 mL的去离子水,超声处理30 min,使氧化石墨烯可以均匀地分散在水中;真空抽滤于滤膜上,将滤膜取下于室温下自然风干1 d;待薄膜完全干燥后将其置于去离子水中,氧化石墨烯薄膜在水中与滤纸分离,滤纸因自身重量沉入水底,薄膜浮于水面之上;用玻璃作为基底将氧化石墨烯薄膜从水中捞出,室温下干燥1 d,即可得到膜厚约为900 nm的氧化石墨烯薄膜。通过调节溶液的浓度及体积,可以得到不同厚度的氧化石墨烯薄膜。
采用二氧化碳激光对氧化石墨烯薄膜进行烧蚀,激光波长为10.6 μm,最高功率为30 W,可以烧蚀成电路形式或全部烧蚀。分别采用1.11、1.14、1.17 W功率的激光对其辐照加热,辐照时间为2 s,光斑大小为0.1 mm。
分别对其进行扫描电镜(scanning electron microscope, SEM)、光电子能谱(X-ray photoelectron spectroscopy, XPS)表征,观察其表面形貌变化及元素含量的改变。SEM仪器的型号为JSM-IT200,XPS仪器的型号为Thermo ESCALAB 250XI。
为了观察不同烧蚀功率下还原氧化石墨烯薄膜的导电性能差异,制备了3种不同功率下玻璃基底上的薄膜,薄膜厚度均在10 μm左右,还原宽度为5 mm,在室温下采用HMS-3000型四探针测试仪测试烧蚀后薄膜的电导率及电阻率。
采用Agilent科技公司生产的纳米压头G200测试系统来测试,压头使用三角棱锥体Berkovich金刚石,力与位移分辨率分别为50 nN和0.01 nm,棱锥体表面与中心线的夹角为65.3%。
在纳米压痕测试过程中,对烧蚀还原区域及未烧蚀区域,分别取5个压痕点,压痕位置要求表面平整,结构均匀没有明显的缺陷,取点要分散。压痕深度为氧化石墨烯薄膜压入100 nm,激光还原后的石墨烯薄膜压入1 μm。测得的弹性模量及硬度取平均值,以减小误差。
2. 结果与讨论
2.1 表面形貌与结构
在冲击速率、激光波长一致的情况下,分别采用功率为1.11、1.14、1.17 W的激光烧蚀氧化石墨烯,通过扫描透射电子显微镜观察加载及未加载区域的表面形貌特征。
图1(a)为功率为1.11 W的激光冲击后,不同倍镜下氧化石墨烯加工及未加工区域的表面形貌。可以看出,与未加工区域氧化石墨烯密实堆叠在一起相比,激光加工路径所经过区域薄膜呈团絮状,颜色比未加工区域亮,但是加工路径上的氧化石墨烯薄膜变化不太明显,由此推测其还原程度偏低。相比之下图1(b)中1.14 W功率下的加工路径颜色更亮,团絮状程度更突出,可以较清晰地看到单层石墨烯薄膜的形貌,加工路径也更完整。图1(c)为功率1.17 W的激光冲击下的氧化石墨烯薄膜的形貌,从中可以看到加工路径上的氧化石墨烯薄膜变化也很大,但是出现了薄膜一侧断裂的现象,有可能会对还原氧化石墨烯薄膜的力电性能产生影响。
采用XPS来表征激光烧蚀对氧含量的影响,来进一步说明氧化石墨烯薄膜的结构变化,通过对比氧化石墨烯薄膜与激光刻蚀石墨烯(laser scribed graphene, LSG)(如图2所示),可以看出:激光烧蚀后氧含量明显降低,说明氧化石墨烯被部分还原为石墨烯;在未被激光还原之前,制备的氧化石墨烯薄膜的碳/氧元素的物质的量比约为2.38,碳元素物质的量占比约为70%,氧元素物质的量占比约为30%;当被1.11 W激光烧蚀之后,薄膜的碳/氧元素物质的量比变为11.53,碳元素物质的量占比变为92.02%,氧元素物质的量占比变为7.98%;激光功率为1.14 W时,薄膜的碳/氧元素的物质的量比变为14.41,碳元素物质的量占比变为93.51%,氧元素物质的量占比变为6.49%;激光功率为1.17 W时,薄膜碳/氧元素的物质的量比为12.85,碳元素物质的量占比变为92.78%,氧元素物质的量占比变为7.22%。所以在激光功率为1.14 W的情况时,碳/氧元素的物质的量比最高,说明此功率下薄膜的还原程度最高。功率为1.17 W时,碳/氧元素的物质的量比反而降低了,根据SEM图中1.17 W功率下,薄膜发生断裂,可以推测是由于功率过高导致一部分碳被损耗掉。考虑到激光还原的环境条件影响,因此可以猜测激光烧蚀后的薄膜中的一些氧是因为和环境中的氧静态相互作用的结果[14]。
2.2 导电性能
氧化石墨烯薄膜导电性能极差,几乎不导电,通过测试可以看出激光烧蚀后的还原氧化石墨烯薄膜,其导电性能获得极大提高,图3显示了不同功率激光冲击下薄膜导电性能的差异,可以看出在1.14 W功率下的薄膜电导率最高,为1.727×103 S/m。而当激光功率进一步增大时,薄膜的导电性能反而有所降低,结合前述SEM表征,在该功率下出现大量断裂层,可推测是因为激光烧蚀导致的还原氧化石墨烯的结构断裂,影响了其导电性[15]。
2.3 纳米压痕实验
为了探究激光烧蚀及烧蚀强度对氧化石墨烯薄膜的力学性能影响,进行了纳米压痕测试,如图4所示。为了降低误差,测得不同压痕点的弹性模量及硬度,然后取其平均值,结果如图5和表1所示。对不同激光功率下还原氧化石墨烯薄膜的弹性模量及硬度做了测试,如图6所示,进一步对其具体数值做了对比,如表2所示。
表 1 不同压痕点的弹性模量及硬度Table 1. Elastic modulus and hardness of different indentation pointsGO压痕点 弹性模量/GPa 硬度/GPa 1 13.42 0.63 2 13.14 0.62 3 13.43 0.60 4 13.58 0.61 平均值 13.39 0.62 表 2 不同激光功率下还原氧化石墨烯薄膜的弹性模量及硬度Table 2. Elastic modulus and hardness of reduced graphene oxide films at different laser power激光还原功率/W 弹性模量/GPa 硬度/GPa 1.11 48.53 5.27 1.14 49.97 5.71 1.17 48.95 5.38 鉴于氧化石墨烯薄膜的厚度为900 nm,为了排除基底对薄膜的影响,对薄膜压100 nm,得到弹性模量为13.39 GPa,硬度为0.62 GPa。烧蚀还原之后得到的还原氧化石墨烯薄膜的厚度增加为10 μm,这里推测厚度增加是由于激光产生的大量热量导致的还原氧化石墨烯层间范德华力的破坏[16]。压入1 μm后测得的1.11 W功率下的弹性模量和硬度为48.53、5.45 GPa,分别比氧化石墨烯薄膜增加了264%、750%,1.14 W功率下的弹性模量和硬度为49.97、5.71 GPa,分别比氧化石墨烯薄膜增加了273%、821%,1.17 W功率下的弹性模量和硬度为48.95、5.38 GPa,分别比氧化石墨烯薄膜增加了266%、768%。烧蚀前后力学性能的巨大差异表明得到的石墨烯还原程度很好,同时在激光功率为1.14 W时,还原效果最好,力学性能最佳。
3. 结 论
通过抽滤法将0.6 mL质量浓度为2 mg/mL的氧化石墨烯溶液抽滤于滤膜上制得900 nm厚的氧化石墨烯薄膜,采用不同功率激光(1.11、1.14、1.17 W)对薄膜进行冲击还原,并对其进行SEM及XPS测试,发现:激光加工前后加工路径上薄膜的颜色及形貌有很大差异,颜色由棕色变为了黑色,形貌结构由之前的密集堆叠变为了团絮状,当激光功率为1.14 W时还原后的薄膜完整性最好,氧含量也最低。
采用四探针测试仪对其导电性能测试后发现薄膜由激光冲击前的几乎不导电变为导电性能较好,并且在功率为1.14 W时,薄膜的电学性能最佳,电导率可以达到1.727×103 S/m。
通过纳米压痕测试发现激光冲击后薄膜的力学性能也得到极大提高,薄膜弹性模量及硬度由之前的13.39、0.62 GPa,在1.14 W激光冲击后弹性模量最高提高至49.97 GPa,硬度达到5.71 GPa。
综上,通过激光冲击后石墨烯薄膜导电性能、弹性模量和硬度都得到极大的提升,可以有望在微纳米光电材料上发挥作用。
-
表 1 不同压痕点的弹性模量及硬度
Table 1. Elastic modulus and hardness of different indentation points
GO压痕点 弹性模量/GPa 硬度/GPa 1 13.42 0.63 2 13.14 0.62 3 13.43 0.60 4 13.58 0.61 平均值 13.39 0.62 表 2 不同激光功率下还原氧化石墨烯薄膜的弹性模量及硬度
Table 2. Elastic modulus and hardness of reduced graphene oxide films at different laser power
激光还原功率/W 弹性模量/GPa 硬度/GPa 1.11 48.53 5.27 1.14 49.97 5.71 1.17 48.95 5.38 -
[1] WONG S I, LIN H, SUNARSO J, et al. Optimization of ionic-liquid based electrolyte concentration for high-energy density graphene supercapacitors [J]. Applied Materials Today, 2020, 18: 100522. DOI: 10.1016/j.apmt.2019.100522. [2] LIN D, MOTLAG M, SAEI M, et al. Shock engineering the additive manufactured graphene-metal nanocomposite with high density nanotwins and dislocations for ultra-stable mechanical properties [J]. Acta Materialia, 2018, 150: 360–372. DOI: 10.1016/j.actamat.2018.03.013. [3] BATAKLIEV T, GEORGIEV V, IVANOV E, et al. Nanoindentation analysis of 3D printed poly (lactic acid)-based composites reinforced with graphene and multiwall carbon nanotubes [J]. Journal of Applied Polymer Science, 2019, 136(13): 47260. DOI: 10.1002/app.47260. [4] 张倩, 唐利斌, 李汝劼, 等. 氧化石墨烯的制备还原及应用进展 [J]. 红外与毫米波学报, 2019, 38(1): 79–90. DOI: 10.11972/j.issn.1001-9014.2019.01.014.ZHANG Q, TANG L B, LI R J, et al. Graphene oxide: progress in preparation, reduction and application [J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 79–90. DOI: 10.11972/j.issn.1001-9014.2019.01.014. [5] GE L, HONG Q, LI H, et al. Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing [J]. Advanced Functional Materials, 2019, 29(38): 1904000. DOI: 10.1002/adfm.201904000. [6] 严如玉. 石墨烯膜和氧化石墨烯膜的飞秒激光微纳加工 [D]. 北京: 北京理工大学, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000774.YAN R Y. Femtosecond laser processing of graphene films and graphene oxide films [D]. Beijing: Beijing Institute of Technology, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000774. [7] 刘璇, 王鹏波, 李必奎, 等. 皮秒激光直写还原石墨烯氧化物薄膜的研究 [J]. 光电子·激光, 2017, 28(10): 1096–1100. DOI: 10.16136/j.joel.2017.10.0057.LIU X, WANG P B, LI B K, et al. Study on reduction of graphene oxide films using picosecond laser direct writing [J]. Journal of Optoelectronics Laser, 2017, 28(10): 1096–1100. DOI: 10.16136/j.joel.2017.10.0057. [8] GONÇALVES G, BORME J, BDKIN I, et al. Reductive nanometric patterning of graphene oxide paper using electron beam lithography [J]. Carbon, 2018, 129: 63–75. DOI: 10.1016/j.carbon.2017.11.067. [9] GUO L, SHAO R Q, ZHANG Y L, et al. Bandgap tailoring and synchronous microdevices patterning of graphene oxides [J]. The Journal of Physical Chemistry C, 2012, 116(5): 3594–3599. DOI: 10.1021/jp209843m. [10] CHEN H Y, HAN D D, TIAN Y, et al. Mask-free and programmable patterning of graphene by ultrafast laser direct writing [J]. Chemical Physics, 2014, 430: 13–17. DOI: 10.1016/j.chemphys.2013.12.005. [11] 韩同伟, 贺鹏飞, 王健, 等. 单层石墨烯薄膜拉伸变形的分子动力学模拟 [J]. 新型炭材料, 2010, 25(4): 261–266.HAN T W, HE P F, WANG J, et al. Molecular dynamics simulation of a single graphene sheet under tension [J]. New Carbon Materials, 2010, 25(4): 261–266. [12] PEI C, UEDA T, ZHU J H. Investigation of the effectiveness of graphene/polyvinyl alcohol on the mechanical and electrical properties of cement composites [J]. Materials and Structures, 2020, 53(3): 66. DOI: 10.1617/s11527-020-01508-6. [13] WO F J, XU R J, SHAO Y X, et al. A multimodal system with synergistic effects of magneto-mechanical, photothermal, photodynamic and chemo therapies of cancer in graphene-quantum dot-coated hollow magnetic Nanospheres [J]. Theranostics, 2016, 6(4): 485–500. DOI: 10.7150/thno.13411. [14] DHONGADE S, KOINKAR P, FURUBE A, et al. Liquid exfoliation of graphene oxide nanoribbons using chemical assisted laser ablation [J]. International Journal of Modern Physics B, 2021, 35(14n16): 2140009. DOI: 10.1142/S0217979221400099. [15] YOGESH G K, SHUAIB E P, ROOPMANI P, et al. Synthesis, characterization and bioimaging application of laser-ablated graphene-oxide nanoparticles (nGOs) [J]. Diamond and Related Materials, 2020, 104: 107733. DOI: 10.1016/j.diamond.2020.107733. [16] EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors [J]. Science, 2012, 335(6074): 1326–1330. DOI: 10.1126/science.1216744. -