激光冲击对氧化石墨烯薄膜的结构及力电性能影响

暴杨帆 王菡 李志刚

暴杨帆, 王菡, 李志刚. 激光冲击对氧化石墨烯薄膜的结构及力电性能影响[J]. 爆炸与冲击, 2022, 42(11): 115301. doi: 10.11883/bzycj-2021-0431
引用本文: 暴杨帆, 王菡, 李志刚. 激光冲击对氧化石墨烯薄膜的结构及力电性能影响[J]. 爆炸与冲击, 2022, 42(11): 115301. doi: 10.11883/bzycj-2021-0431
BAO Yangfan, WANG Han, LI Zhigang. Effects of laser irradiation on the structure and mechanical-electrical properties of graphene oxide thin films[J]. Explosion And Shock Waves, 2022, 42(11): 115301. doi: 10.11883/bzycj-2021-0431
Citation: BAO Yangfan, WANG Han, LI Zhigang. Effects of laser irradiation on the structure and mechanical-electrical properties of graphene oxide thin films[J]. Explosion And Shock Waves, 2022, 42(11): 115301. doi: 10.11883/bzycj-2021-0431

激光冲击对氧化石墨烯薄膜的结构及力电性能影响

doi: 10.11883/bzycj-2021-0431
基金项目: 山西省应用基础研究计划面上青年项目(201801D221133)
详细信息
    作者简介:

    暴杨帆(1994- ),男,硕士研究生,byf1843516@163.com

    通讯作者:

    李志刚(1975- ),男,博士,副教授,lizhigang@tyut.edu.cn

  • 中图分类号: O389; TN244

Effects of laser irradiation on the structure and mechanical-electrical properties of graphene oxide thin films

  • 摘要: 采用激光烧蚀氧化石墨烯薄膜,可实现其微尺度图案化加工,以应用于微纳米电子器件。但激光冲击下氧化石墨烯薄膜的结构及力、电性能变化直接影响了器件稳定性和可靠性。为研究超高应变率加载对氧化石墨烯薄膜的结构及性能的影响,采用不同功率激光冲击氧化石墨烯薄膜,通过对其表面形貌、化学成分表征揭示薄膜结构的改变机理,通过对薄膜冲击前后的硬度、弹性模量、导电率测试探索合理的激光加工参数。结果表明:在1.14 W功率的二氧化碳激光冲击下,可实现加工区氧化石墨烯薄膜的还原且不造成薄膜烧蚀断裂,其电导率可达到1.727×103 S/m,弹性模量为49.97 GPa,硬度为5.71 GPa。
  • 图  1  不同倍镜下的氧化石墨烯薄膜还原形貌

    Figure  1.  Reduced morphology of graphene oxide films under different magnifications

    图  2  激光烧蚀前后的元素变化

    Figure  2.  Elemental content changes before and after laser ablation

    图  3  不同激光功率下的电阻率及电导率

    Figure  3.  Resistivity and conductivity at different laser powers

    图  4  氧化石墨烯薄膜与还原氧化石墨烯的不同压入深度

    Figure  4.  Pressure entry depths of GO films and LSG films

    图  5  氧化石墨烯薄膜的弹性模量及硬度

    Figure  5.  Elastic modulus and hardness of GO films

    图  6  不同激光功率下还原氧化石墨烯薄膜的弹性模量及硬度

    Figure  6.  Elastic modulus and hardness of reduced graphene oxide films at different laser power

    表  1  不同压痕点的弹性模量及硬度

    Table  1.   Elastic modulus and hardness of different indentation points

    GO压痕点弹性模量/GPa硬度/GPa
    113.420.63
    213.140.62
    313.430.60
    413.580.61
    平均值13.390.62
    下载: 导出CSV

    表  2  不同激光功率下还原氧化石墨烯薄膜的弹性模量及硬度

    Table  2.   Elastic modulus and hardness of reduced graphene oxide films at different laser power

    激光还原功率/W弹性模量/GPa硬度/GPa
    1.1148.535.27
    1.1449.975.71
    1.1748.955.38
    下载: 导出CSV
  • [1] WONG S I, LIN H, SUNARSO J, et al. Optimization of ionic-liquid based electrolyte concentration for high-energy density graphene supercapacitors [J]. Applied Materials Today, 2020, 18: 100522. DOI: 10.1016/j.apmt.2019.100522.
    [2] LIN D, MOTLAG M, SAEI M, et al. Shock engineering the additive manufactured graphene-metal nanocomposite with high density nanotwins and dislocations for ultra-stable mechanical properties [J]. Acta Materialia, 2018, 150: 360–372. DOI: 10.1016/j.actamat.2018.03.013.
    [3] BATAKLIEV T, GEORGIEV V, IVANOV E, et al. Nanoindentation analysis of 3D printed poly (lactic acid)-based composites reinforced with graphene and multiwall carbon nanotubes [J]. Journal of Applied Polymer Science, 2019, 136(13): 47260. DOI: 10.1002/app.47260.
    [4] 张倩, 唐利斌, 李汝劼, 等. 氧化石墨烯的制备还原及应用进展 [J]. 红外与毫米波学报, 2019, 38(1): 79–90. DOI: 10.11972/j.issn.1001-9014.2019.01.014.

    ZHANG Q, TANG L B, LI R J, et al. Graphene oxide: progress in preparation, reduction and application [J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 79–90. DOI: 10.11972/j.issn.1001-9014.2019.01.014.
    [5] GE L, HONG Q, LI H, et al. Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing [J]. Advanced Functional Materials, 2019, 29(38): 1904000. DOI: 10.1002/adfm.201904000.
    [6] 严如玉. 石墨烯膜和氧化石墨烯膜的飞秒激光微纳加工 [D]. 北京: 北京理工大学, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000774.

    YAN R Y. Femtosecond laser processing of graphene films and graphene oxide films [D]. Beijing: Beijing Institute of Technology, 2016. DOI: 10.26948/d.cnki.gbjlu.2016.000774.
    [7] 刘璇, 王鹏波, 李必奎, 等. 皮秒激光直写还原石墨烯氧化物薄膜的研究 [J]. 光电子·激光, 2017, 28(10): 1096–1100. DOI: 10.16136/j.joel.2017.10.0057.

    LIU X, WANG P B, LI B K, et al. Study on reduction of graphene oxide films using picosecond laser direct writing [J]. Journal of Optoelectronics Laser, 2017, 28(10): 1096–1100. DOI: 10.16136/j.joel.2017.10.0057.
    [8] GONÇALVES G, BORME J, BDKIN I, et al. Reductive nanometric patterning of graphene oxide paper using electron beam lithography [J]. Carbon, 2018, 129: 63–75. DOI: 10.1016/j.carbon.2017.11.067.
    [9] GUO L, SHAO R Q, ZHANG Y L, et al. Bandgap tailoring and synchronous microdevices patterning of graphene oxides [J]. The Journal of Physical Chemistry C, 2012, 116(5): 3594–3599. DOI: 10.1021/jp209843m.
    [10] CHEN H Y, HAN D D, TIAN Y, et al. Mask-free and programmable patterning of graphene by ultrafast laser direct writing [J]. Chemical Physics, 2014, 430: 13–17. DOI: 10.1016/j.chemphys.2013.12.005.
    [11] 韩同伟, 贺鹏飞, 王健, 等. 单层石墨烯薄膜拉伸变形的分子动力学模拟 [J]. 新型炭材料, 2010, 25(4): 261–266.

    HAN T W, HE P F, WANG J, et al. Molecular dynamics simulation of a single graphene sheet under tension [J]. New Carbon Materials, 2010, 25(4): 261–266.
    [12] PEI C, UEDA T, ZHU J H. Investigation of the effectiveness of graphene/polyvinyl alcohol on the mechanical and electrical properties of cement composites [J]. Materials and Structures, 2020, 53(3): 66. DOI: 10.1617/s11527-020-01508-6.
    [13] WO F J, XU R J, SHAO Y X, et al. A multimodal system with synergistic effects of magneto-mechanical, photothermal, photodynamic and chemo therapies of cancer in graphene-quantum dot-coated hollow magnetic Nanospheres [J]. Theranostics, 2016, 6(4): 485–500. DOI: 10.7150/thno.13411.
    [14] DHONGADE S, KOINKAR P, FURUBE A, et al. Liquid exfoliation of graphene oxide nanoribbons using chemical assisted laser ablation [J]. International Journal of Modern Physics B, 2021, 35(14n16): 2140009. DOI: 10.1142/S0217979221400099.
    [15] YOGESH G K, SHUAIB E P, ROOPMANI P, et al. Synthesis, characterization and bioimaging application of laser-ablated graphene-oxide nanoparticles (nGOs) [J]. Diamond and Related Materials, 2020, 104: 107733. DOI: 10.1016/j.diamond.2020.107733.
    [16] EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors [J]. Science, 2012, 335(6074): 1326–1330. DOI: 10.1126/science.1216744.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  83
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-10
  • 修回日期:  2022-01-25
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回