不同应变率下蓝宝石透明陶瓷玻璃的力学响应

牛欢欢 闫晓鹏 罗浩舜 陈佳君 李志强

牛欢欢, 闫晓鹏, 罗浩舜, 陈佳君, 李志强. 不同应变率下蓝宝石透明陶瓷玻璃的力学响应[J]. 爆炸与冲击, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434
引用本文: 牛欢欢, 闫晓鹏, 罗浩舜, 陈佳君, 李志强. 不同应变率下蓝宝石透明陶瓷玻璃的力学响应[J]. 爆炸与冲击, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434
NIU Huanhuan, YAN Xiaopeng, LUO Haoshun, CHEN Jiajun, LI Zhiqiang. Mechanical response of sapphire transparent ceramic glass at different strain rates[J]. Explosion And Shock Waves, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434
Citation: NIU Huanhuan, YAN Xiaopeng, LUO Haoshun, CHEN Jiajun, LI Zhiqiang. Mechanical response of sapphire transparent ceramic glass at different strain rates[J]. Explosion And Shock Waves, 2022, 42(7): 073105. doi: 10.11883/bzycj-2021-0434

不同应变率下蓝宝石透明陶瓷玻璃的力学响应

doi: 10.11883/bzycj-2021-0434
基金项目: 国家自然科学基金(11972244)
详细信息
    作者简介:

    牛欢欢(1996- ),男,硕士研究生,1137390516@qq.com

    通讯作者:

    李志强(1973- ),男,教授,lizhiqiang@tyut.edu.cn

  • 中图分类号: O347.3

Mechanical response of sapphire transparent ceramic glass at different strain rates

  • 摘要: 蓝宝石(A12O3)是透明陶瓷玻璃,它相较传统陶瓷(A12O3)有优良的透光性,而且保留了陶瓷优良的力学性能。利用电子拉伸机和分离式霍普金森杆设备对试样进行准静态应变率为(10−4、10−3、10−2 s−1)和4种动态应变率(850、1 100、1 300、1 450 s−1)下的单轴压缩力学行为,用高速摄像机记录了蓝宝石透明陶瓷玻璃试样在准静态和动态压缩下的破坏过程。实验结果表明:从加载过程中的应力应变曲线是由加载段和失效段组成的,该材料是典型的脆性材料,并且有明显的应变率效应,随着应变率的提高,蓝宝石透明陶瓷玻璃的抗压强度也会提高;准静态和动态压缩下蓝宝石透明陶瓷玻璃都是在宏观裂纹扩展作用下失效破坏。通过分析不同应变率下蓝宝石透明陶瓷玻璃的破坏过程,分析得到该材料的失效是在加载的过程中,在蓝宝石透明陶瓷玻璃承载能力最低的区域出现裂纹源,然后裂纹成形并沿着加载方向扩展,然后裂纹之间相互交错,最终达到饱和状态破坏失效;在高应变率下,极短的时间内产生多处裂纹源,需要更大的能量去使裂纹成形、扩展,宏观上就表现为应变率效应。
  • 图  1  试样

    Figure  1.  Samples

    图  2  电子拉伸机实验

    Figure  2.  Electronic stretching machine and experimental equipment

    图  3  SHPB设备示意图

    Figure  3.  Schematic diagram of SHPB device

    图  4  准静态实验结果

    Figure  4.  Quasi static experimental results

    图  5  强度-时间曲线

    Figure  5.  Strength time curve

    图  6  准静态下试样破坏过程

    Figure  6.  Failure process of specimen under quasi-static state

    图  7  动态压缩中的经典信号

    Figure  7.  Classic signals in dynamic compression

    图  8  真实应力和真实应变率随真实应变的变化

    Figure  8.  Variation of real stress and real strain rate with real strain

    图  9  动态实验结果

    Figure  9.  Dynamic experimental results

    图  10  动态压缩下试件的破坏过程

    Figure  10.  Failure process of specimen under dynamic compression

    图  11  实验数据拟合曲线

    Figure  11.  Fitting curve of experimental data

    图  12  破坏原理示意图

    Figure  12.  Schematic diagram of failure principle

    表  1  准静态实验试样的破坏强度

    Table  1.   Failure strength of the specimen quasi-static test

    应变率/s−1破坏强度/MPa平均破坏强度/MPa
    试件1试件2试件3
    10−41004.6351061.7801051.3501039.255
    10−31172.8461074.2801085.6871110.937
    10−21251.4471239.0341274.6101255.030
    下载: 导出CSV

    表  2  动态压缩实验结果

    Table  2.   Dynamic experimental results

    应变率/s−1强度/MPa失效应变
    8502044.3330.0210
    11002168.5330.0180
    13002385.3910.0155
    14502753.9090.0130
    下载: 导出CSV
  • [1] JOHNSON R, BISWAS P, RAMAVATH P, et al. Transparent polycrystalline ceramics: an overview [J]. Transactions of the Indian Ceramic Society, 2012, 71(2): 73–85. DOI: 10.1080/0371750X.2012.716230.
    [2] KRELL A, KLIMKE J, HUTZLER T. Advanced spinel and sub-μm Al2O3 for transparent armour applications [J]. Journal of the European Ceramic Society, 2009, 29(2): 275–281. DOI: 10.1016/j.jeurceramsoc.2008.03.024.
    [3] KANEL G I, NELLIS W J, SAVINYKH A S, et al. Response of seven crystallographic orientations of sapphire crystals to shock stresses of 16-86 GPa [J]. Journal of Applied Physics, 2009, 106(4): 043524. DOI: 10.1063/1.3204940.
    [4] MUNSON D E, LAWRENCE R J. Dynamic deformation of polycrystalline alumina [J]. Journal of Applied Physics, 1979, 50(10): 6272–6282. DOI: 10.1063/1.325766.
    [5] MCCAULEY J W, STRASSBURGER E, PATEL P, et al. Experimental observations on dynamic response of selected transparent armor materials [J]. Experimental Mechanics, 2013, 53(1): 3–29. DOI: 10.1007/s11340-012-9658-5.
    [6] FORQUIN P, ZINSZNER J L. Experimental study of the dynamic fragmentation in transparent ceramic subjected to projectile impact [M]// CASEM D, LAMBERSON L, KIMBERLEY J. Dynamic Behavior of Materials. Cham: Springer, 2017: 165-170. DOI: 10.1007/978-3-319-41132-3_23.
    [7] KRELL A, STRASSBURGER E, HUTZLER T, et al. Single and polycrystalline transparent ceramic armor with different crystal structure [J]. Journal of the American Ceramic Society, 2013, 96(9): 2718–2721. DOI: 10.1111/jace.12530.
    [8] HANEY E J, SUBHASH G. Damage mechanisms perspective on superior ballistic performance of spinel over sapphire [J]. Experimental Mechanics, 2013, 53(1): 31–46. DOI: 10.1007/s11340-012-9634-0.
    [9] KLEISER G J, CHHABILDAS L C, REINHART W D. Comparison of dynamic compression behavior of single crystal sapphire to polycrystalline alumina [J]. International Journal of Impact Engineering, 2011, 38(6): 473–479. DOI: 10.1016/j.ijimpeng.2010.10.018.
    [10] HANEY E J, SUBHASH G. Analysis of interacting cracks due to sequential indentations on sapphire [J]. Acta Materialia, 2011, 59(9): 3528–3536. DOI: 10.1016/j.actamat.2011.02.026.
    [11] 易海兰, 蒋志君, 毛小建, 等. 透明氧化铝陶瓷的研究新进展 [J]. 无机材料学报, 2010, 25(8): 795–800. DOI: 10.3724/SP.J.1077.2010.00795.

    YI H L, JIANG Z J, MAO X J, et al. New development of transparent alumina ceramics [J]. Journal of Inorganic Materials, 2010, 25(8): 795–800. DOI: 10.3724/SP.J.1077.2010.00795.
    [12] 张晓晴, 姚小虎, 宁建国, 等. Al2O3陶瓷材料应变率相关的动态本构关系研究 [J]. 爆炸与冲击, 2004, 24(3): 226–232.

    ZHANG X Q, YAO X H, NING J G, et al. A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics [J]. Explosion and Shock Waves, 2004, 24(3): 226–232.
    [13] 刘清风, 刘同祥, 姜峰. 冲击压缩载荷下蓝宝石的动态力学性能试验方法 [J]. 超硬材料工程, 2014, 26(3): 14–18. DOI: 10.3969/j.issn.1673-1433.2014.03.004.

    LIU Q F, LIU T X, JIANG F. The Test method for dynamic mechanical performance of sapphire under the shock compression loading [J]. Superhard Material Engineering, 2014, 26(3): 14–18. DOI: 10.3969/j.issn.1673-1433.2014.03.004.
    [14] 黄良钊, 张安平. Al2O3陶瓷的动态力学性能研究 [J]. 中国陶瓷, 1999, 35(1): 13–15,21. DOI: 10.16521/j.cnki.issn.1001-9642.1999.01.004.

    HUANG L Z, ZHANG A P. A study of dynamic mechanical properties on Al2O3 ceramics [J]. China Ceramics, 1999, 35(1): 13–15,21. DOI: 10.16521/j.cnki.issn.1001-9642.1999.01.004.
    [15] 谈瑞, 李海洋, 黄俊宇. Al2O3陶瓷动静态压缩下碎片形貌与破坏机理分析 [J]. 爆炸与冲击, 2020, 40(2): 023103. DOI: 10.11883/bzycj-2019-0050.

    TAN R, LI H Y, HUANG J Y. Investigations on the fragment morphology and fracture mechanisms of Al2O3 ceramics under dynamic and quasi-static compression [J]. Explosion and Shock Waves, 2020, 40(2): 023103. DOI: 10.11883/bzycj-2019-0050.
    [16] HEARD H C, CLINE C F. Mechanical behaviour of polycrystalline BeO, Al2O3 and AlN at high pressure [J]. Journal of Materials Science, 1980, 15(8): 1889–1897. DOI: 10.1007/BF00550614.
    [17] 王振, 张超, 王银茂, 等. 飞机风挡无机玻璃在不同应变率下的力学行为 [J]. 爆炸与冲击, 2018, 38(2): 295–301. DOI: 10.11883/bzycj-2016-0186.

    WANG Z, ZHANG C, WANG Y M. Mechanical behaviours of aeronautical inorganic glass at different strain rates [J]. Explosion and Shock Waves, 2018, 38(2): 295–301. DOI: 10.11883/bzycj-2016-0186.
    [18] CHEN W N, RAVICHANDRAN G. Dynamic compressive failure of a glass ceramic under lateral confinement [J]. Journal of the Mechanics and Physics of Solids, 1997, 45(8): 1303–1328. DOI: 10.1016/S0022-5096(97)00006-9.
    [19] CHEN W, RAVICHANDRAN G. Failure mode transition in ceramics under dynamic multiaxial compression [J]. International Journal of Fracture, 2000, 101(1/2): 141–159. DOI: 10.1023/A:1007672422700.
    [20] 冯晓伟, 李俊承, 常敬臻, 等. 氧化铝陶瓷受冲击压缩破坏的细观机理研究 [J]. 兵工学报, 2017, 38(12): 2472–2479. DOI: 10.3969/j.issn.1000-1093.2017.12.022.

    FENG X W, LI J C, CHANG J Z, et al. Investigation on mesoscale failure mechanism of alumina under shock compression [J]. Acta Armamentarii, 2017, 38(12): 2472–2479. DOI: 10.3969/j.issn.1000-1093.2017.12.022.
    [21] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 380.
    [22] 宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率 [J]. 爆炸与冲击, 2005, 25(3): 207–216. DOI: 10.11883/1001-1455(2005)03-0207-10.

    SONG L, HU S S. Stress uniformity and constant strain rate in SHPB test [J]. Explosion and Shock Waves, 2005, 25(3): 207–216. DOI: 10.11883/1001-1455(2005)03-0207-10.
    [23] 张青艳. 脆性材料在准静态和冲击压缩载荷作用下的动态碎裂过程 [D]. 宁波: 宁波大学, 2019: 26-27.

    ZHANG Q Y. Fragmentations of brittle materials under quasi-static and dynamic compression [D]. Ningbo: Ningbo University, 2019: 26-27.
    [24] 李二兵, 谭跃虎, 马聪, 等. 三向压力作用下盐岩SHPB试验及动力强度研究 [J]. 岩石力学与工程学报, 2015, 34(S2): 3742–3749. DOI: 10.13722/j.cnki.jrme.2015.0594.

    LI E B, TAN Y H, MA C, et al. Split Hopkinson pressure bar test and dynamic strength research of salt rock under three-pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3742–3749. DOI: 10.13722/j.cnki.jrme.2015.0594.
    [25] 方秦, 洪建, 张锦华, 等. 混凝土类材料SHPB实验若干问题探讨 [J]. 工程力学, 2014, 31(5): 1–14,26. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.

    FANG Q, HONG J, ZHANG J H, et al. Issues of SHPB test on concrete-like material [J]. Engineering Mechanics, 2014, 31(5): 1–14,26. DOI: 10.6052/j.issn.1000-4750.2013.05.ST07.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  119
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-02-21
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回