攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究

李鹏程 张先锋 刘闯 魏海洋 刘均伟 邓宇轩

李鹏程, 张先锋, 刘闯, 魏海洋, 刘均伟, 邓宇轩. 攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究[J]. 爆炸与冲击, 2022, 42(11): 113302. doi: 10.11883/bzycj-2021-0435
引用本文: 李鹏程, 张先锋, 刘闯, 魏海洋, 刘均伟, 邓宇轩. 攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究[J]. 爆炸与冲击, 2022, 42(11): 113302. doi: 10.11883/bzycj-2021-0435
LI Pengcheng, ZHANG Xianfeng, LIU Chuang, WEI Haiyang, LIU Junwei, DENG Yuxuan. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets[J]. Explosion And Shock Waves, 2022, 42(11): 113302. doi: 10.11883/bzycj-2021-0435
Citation: LI Pengcheng, ZHANG Xianfeng, LIU Chuang, WEI Haiyang, LIU Junwei, DENG Yuxuan. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets[J]. Explosion And Shock Waves, 2022, 42(11): 113302. doi: 10.11883/bzycj-2021-0435

攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究

doi: 10.11883/bzycj-2021-0435
基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金(U1730101);国家自然科学基金(11790292);中央高校基本科研业务费专项资金(30919011401);
详细信息
    作者简介:

    李鹏程(1996- ),男,博士研究生,987323971@qq.com

    通讯作者:

    张先锋(1978- ),男,博士,教授,lynx@njust.edu.cn

  • 中图分类号: O385

Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets

  • 摘要: 为了研究弹体斜侵彻有限厚混凝土靶板的作用特性,开展了尖卵形弹体斜侵彻间隔混凝土靶实验,获得了弹体侵彻过程中的姿态及弹道特性、靶板破坏参数,分析了攻角与入射角联合作用对弹体侵彻混凝土靶板“二次偏转现象”、靶后偏转角以及弹体侵彻间隔靶板弹道轨迹的影响规律。研究结果表明:入射角越大,“二次偏转现象”越明显,弹体靶后偏转角越大;初始攻角抑制“二次偏转现象”,攻角越大,抑制作用越显著;初始攻角与入射角方向相同时,初始攻角加剧靶后偏转角的增大;当攻角与入射角方向相反时,较小的攻角能够抑制弹体靶后偏转角的增大,而当初始攻角较大时,攻角成为影响弹体偏转的主要因素,攻角越大,弹体靶后偏转角越大。
  • 图  1  实验弹体

    Figure  1.  Experimental projectile

    图  2  实验靶标

    Figure  2.  Experimental concrete targets

    图  3  实验布局示意图

    Figure  3.  Schematic of experimental layout

    图  4  实验现场布局

    Figure  4.  Experimental layout

    图  5  弹体侵彻条件

    Figure  5.  Condition of penetration

    图  6  弹体侵彻间隔混凝土靶弹道参数示意图

    Figure  6.  Schematic of ballistic parameters of a projectile penetrating two spaced concrete targets

    图  7  第1发实验弹道参数变化过程

    Figure  7.  Change of ballistic parameters in the first experiment

    图  8  第2发实验弹道参数变化过程

    Figure  8.  Change of ballistic parameters in the second experiment

    图  9  第3发实验弹道参数变化过程

    Figure  9.  Change of ballistic parameters in the third experiment

    图  10  第4发实验弹道参数变化过程

    Figure  10.  Change of ballistic parameters in the fourth experiment

    图  11  第5发实验弹道参数变化过程

    Figure  11.  Change of ballistic parameters in the fifth experiment

    图  12  典型实验回收弹体与原始弹体

    Figure  12.  Comparison of the projectile before and after test

    图  13  靶板典型破坏结果照片

    Figure  13.  Photographs of typical destruction of targets

    图  14  靶板破坏参数示意图

    Figure  14.  Destruction parameters of the target

    图  15  弹体侵彻过程“二次偏转现象”

    Figure  15.  Second deflection during projectile penetration

    图  16  弹体斜侵彻有限厚靶板冲击波传播[29, 34]

    Figure  16.  Propagation of shock waves when a projectile obliquely penetrate a finite-thickness target[29, 34]

    图  17  第1发实验弹体侵彻过程偏转变化

    Figure  17.  Change of projectile deflection angle in the first experiment

    图  18  第2发实验弹体侵彻过程偏转变化

    Figure  18.  Change of projectile deflection angle in the second experiment

    图  19  第3发实验弹体侵彻过程偏转变化

    Figure  19.  Change of projectile deflection angle in the third experiment

    图  20  第4发实验弹体侵彻过程偏转变化

    Figure  20.  Change of projectile deflection angle in the fourth experiment

    图  21  第5发实验弹体侵彻过程偏转变化

    Figure  21.  Change of projectile deflection angle in the fifth experiment

    表  1  弹体参数

    Table  1.   Parameters of projectile

    材料Kd/mml/mmm/gQc/mm
    30CrMnSiNi2A45~4830180520494
    下载: 导出CSV

    表  2  靶板破坏参数实验结果

    Table  2.   Destruction parameters of targets under different operating conditions

    工况v/(m·s−1)α/(°)φ/(°)vr/(m·s−1)Dch/mmDcf /mmDcr /mmHcf/mmHcr /mmVcf/cm3Vcr/cm3
    1-1791−1.60−1.33700673472875743715993
    1-2700−5.11−3.086027029731449518971170
    2-1705+14.41−0.70624472892476337547700
    2-2624+12.67−1.44531532782945248570603
    3-1515+11.05−4.22409422482895841510825
    3-2409+3.89−1.19310442233664753475960
    4-1515+28.54−1.034286126833552484531090
    4-2428+27.34−2.352636435938846548751037
    5-1694+28.28−1.525766826130056447481055
    5-2576+25.91−2.11472593023405743720995
    下载: 导出CSV

    表  3  弹体侵彻每层混凝土靶板前后弹道参数

    Table  3.   Parameters of projectile penetration under different initial conditions

    编号v/(m·s−1)α/(°)φ/(°)v/(m·s−1)Δv/(m·s−1)Δβ/(°)
    1-1791−1.60−1.3370091+3.51
    1-2700−5.11−3.0860298+7.64
    2-1705+14.41−0.7062481+0.74
    2-2624+12.67−1.4453193+2.92
    3-1515+11.05−4.22409106+7.36
    3-2409+3.89−1.1931099−0.82
    4-1515+28.54−1.0342887+1.80
    4-2428+27.34−2.35263165+2.01
    5-1694+28.28−1.52576118+3.17
    5-2576+25.91−2.11472104+4.78
    下载: 导出CSV
  • [1] GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [2] FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [3] 杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性 [J]. 兵工学报, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.

    DU H C, ZHANG X F, LIU C, et al. Trajectory characteristics of projectile obliquely penetrating into steel target with multi-layer space structure [J]. Acta Armamentarii, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.
    [4] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [5] 武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
    [6] GAO X D, LI Q M. Trajectory instability and convergence of the curvilinear motion of a hard projectile in deep penetration [J]. International Journal of Impact Engineering, 2017, 121: 123–142.DOI. DOI: 10.1016/j.ijmecsci.2016.12.021.
    [7] 马爱娥, 黄风雷. 弹体斜侵彻钢筋混凝土的试验研究 [J]. 北京理工大学学报, 2007, 27(6): 482–486. DOI: 10.3969/j.issn.1001-0645.2007.06.004.

    MA A E, HUANG F L. Experimental research on oblique penetration into reinforced concrete [J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 482–486. DOI: 10.3969/j.issn.1001-0645.2007.06.004.
    [8] 吕中杰, 徐钰巍, 黄风雷. 弹体斜侵彻混凝土过程中的方向偏转 [J]. 兵工学报, 2009, 30(S2): 301–304.

    LV Z J, XU Y W, HUANG F L. Transverse deflection of projectile obliquely penetrating into concrete [J]. Acta Armamentarii, 2009, 30(S2): 301–304.
    [9] 王可慧, 宁建国, 李志康, 等. 高速弹体非正侵彻混凝土靶的弹道偏转实验研究 [J]. 高压物理学报, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.

    WANG K H, NING J G, LI Z K, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.
    [10] BERNARD R S, CREIGHTON D C. Projectile penetration in soil and rock: analysis for non-normal impact: SL-79-15 [R]. Vicksburg: U. S. Army Engineer Waterways Experiment Station, 1979.
    [11] KONG X Z, FANG Q, HONG J, et al. Numerical study of the wake separation and reattachment effect on the trajectory of a hard projectile [J]. International Journal of Protective Structures, 2014, 5(1): 97–117. DOI: 10.1260/2041-4196.5.1.97.
    [12] LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [13] 李进忠, 蔡汉文, 崔秉贵, 等. 混凝土侵彻的工程计算模型 [J]. 兵工学报, 1995, 16(4): 86–88.

    LI J Z, CAI H W, CUI B G, et al. An engineering calculation model for the penetration in concrete targets [J]. Acta Armamentarii, 1995, 16(4): 86–88.
    [14] 尹放林, 王明洋, 钱七虎, 等. 弹丸斜入射对侵彻深度的影响 [J]. 爆炸与冲击, 1998, 18(1): 69–76.

    YIN F L, WANG M Y, QIAN Q H, et al. Penetration depth of projectile oblique into target [J]. Explosion and Shock Waves, 1998, 18(1): 69–76.
    [15] 闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究 [D]. 北京: 北京理工大学, 2015: 55–80.

    SHAN Y. Investigation on the mass abrasion and motion of the projectile non-normal penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2015: 55–80.
    [16] 黄民荣. 刚性弹体对混凝土靶的侵彻与贯穿机理研究 [D]. 南京: 南京理工大学, 2011: 53–107.

    HUANG M R. Penetration and perforation mechanism of rigid projectile into the concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2011: 53–107.
    [17] WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
    [18] 何涛. 动能弹在不同材料靶体中的侵彻行为研究 [D]. 合肥: 中国科学技术大学, 2007: 12–40.

    HE T. A study on the penetration of projectiles into targets made of various materials [D]. Hefei: University of Science and Technology of China, 2007: 12-40.
    [19] CHEN X W, FAN S C, LI Q M. Oblique and normal perforation of concrete targets by a rigid projectile [J]. International Journal of Impact Engineering, 2004, 30(6): 617–637. DOI: 10.1016/j.ijimpeng.2003.08.003.
    [20] CHEN X W, LI X L, HUANG F L, et al. Normal perforation of reinforced concrete target by rigid projectile [J]. International Journal of Impact Engineering, 2008, 35(10): 1119–1129. DOI: 10.1016/j.ijimpeng.2008.01.002.
    [21] 薛建锋. 弹体侵彻与贯穿混凝土靶的效应研究 [D]. 南京: 南京理工大学, 2016: 15–95.

    XUE J F. Research on the performance of projectile penetration and perforation into concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2016: 15–95.
    [22] DUAN Z P, LI S R, MA Z F, et al. Attitude deflection of oblique perforation of concrete targets by a rigid projectile [J]. Defence Technology, 2020, 16(3): 596–608. DOI: 10.1016/j.dt.2019.09.009.
    [23] 段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.

    DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
    [24] 马兆芳, 段卓平, 欧卓成, 等. 弹体斜侵彻贯穿薄混凝土靶姿态变化实验和理论研究 [J]. 兵工学报, 2015, 36(S1): 248–254.

    MA Z F, DUAN Z P, OU Z C, et al. The experimental and theoretical research on attitude of projectile obliquely penetrating into thin concrete target [J]. Acta Armamentarii, 2015, 36(S1): 248–254.
    [25] 冯杰. 弹体非正侵彻混凝土薄靶姿态偏转数值模拟研究 [D]. 北京: 北京理工大学, 2016: 29–64.

    FENG J. Numerical simulation of attitude deflection of a projectile after non-ideal perforation of thin concrete target [D]. Beijing: Beijing Institute of Technology, 2016: 29–64.
    [26] 刘世鑫. 非正侵彻混凝土薄靶弹体姿态变化的数值模拟研究 [D]. 北京: 北京理工大学, 2014: 30–40.

    LIU S X. Numerical simulation of attitude change of a projectile after oblique perforation of thin concrete target [D]. Beijing: Beijing Institute of Technology, 2014: 30–40.
    [27] 李江涛. 弹体侵彻多层间隔混凝土靶的弹道特性研究 [D]. 南京: 南京理工大学, 2017: 36–58.

    LI J T. Study on characteristics of projectile penetrating multi-layer spaced concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2017: 36–58.
    [28] 张帅. 弹丸侵彻钢筋混凝土多层靶板的数值模拟分析 [D]. 南京: 南京理工大学, 2018: 20–85.

    ZHANG S. Numerical simulation analysis of projectile penetrating reinforced concrete multilayer target [D]. Nanjing: Nanjing University of Science and Technology, 2018: 20–85.
    [29] 马兆芳. 动能弹斜侵彻有限厚混凝土靶体的弹道规律研究 [D]. 北京: 北京理工大学, 2016: 78–81.

    MA Z F. Investigation on trajectory regularity of kinetic energy projectile oblique penetration into concrete targets of finite thickness [D]. Beijing: Beijing Institute of Technology, 2016: 78–81.
    [30] 吴普磊, 李鹏飞, 董平, 等. 攻角对弹体斜侵彻多层混凝土靶弹道偏转影响的数值模拟及试验验证 [J]. 火炸药学报, 2018, 41(2): 202–207. DOI: 10.14077/j.issn.1007-7812.2018.02.017.

    WU P L, LI P F, DONG P, et al. Numerical simulation and experimental verification on the influence of angle of attack on ballistic deflection of oblique penetrating multi-layer concrete targets for projectile [J]. Chinese Journal of Explosives & Propellants, 2018, 41(2): 202–207. DOI: 10.14077/j.issn.1007-7812.2018.02.017.
    [31] ANDERSON JR C E, BEHNER T, HOHLER V. Penetration efficiency as a function of target obliquity and projectile pitch [J]. Journal of Applied Mechanics, 2013, 80(3): 031801. DOI: 10.1115/1.4023342.
    [32] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [33] 高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析 [J]. 兵工学报, 2014, 35(S2): 33–39.

    GAO X D, LI Q M. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle [J]. Acta Armamentarii, 2014, 35(S2): 33–39.
    [34] JENA P K, JAGTAP N, KUMAR K S, et al. Some experimental studies on angle effect in penetration [J]. International Journal of Impact Engineering, 2010, 37(5): 489–501. DOI: 10.1016/j.ijimpeng.2009.11.009.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  138
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-01-17
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回