混凝土冲击破坏动态力学及能量特性分析

党发宁 李玉涛 任劼 周玫

党发宁, 李玉涛, 任劼, 周玫. 混凝土冲击破坏动态力学及能量特性分析[J]. 爆炸与冲击, 2022, 42(8): 083202. doi: 10.11883/bzycj-2021-0444
引用本文: 党发宁, 李玉涛, 任劼, 周玫. 混凝土冲击破坏动态力学及能量特性分析[J]. 爆炸与冲击, 2022, 42(8): 083202. doi: 10.11883/bzycj-2021-0444
DANG Faning, LI Yutao, REN Jie, ZHOU Mei. Analysis of dynamic mechanics and energy characteristics of concrete impact failure[J]. Explosion And Shock Waves, 2022, 42(8): 083202. doi: 10.11883/bzycj-2021-0444
Citation: DANG Faning, LI Yutao, REN Jie, ZHOU Mei. Analysis of dynamic mechanics and energy characteristics of concrete impact failure[J]. Explosion And Shock Waves, 2022, 42(8): 083202. doi: 10.11883/bzycj-2021-0444

混凝土冲击破坏动态力学及能量特性分析

doi: 10.11883/bzycj-2021-0444
基金项目: 国家自然科学基金(51979225,51679199)
详细信息
    作者简介:

    党发宁(1962- ),男,博士,教授,dangfn@mail.xaut.edu.cn

    通讯作者:

    李玉涛(1992- ),男,博士研究生,1200710003@stu.xaut.edu.cn

  • 中图分类号: O383; TU502

Analysis of dynamic mechanics and energy characteristics of concrete impact failure

  • 摘要: 动强度和能量耗散规律是研究混凝土动力特性的主要内容。为探究混凝土在冲击荷载作用下的动态力学、变形以及能量演化特征,利用直径为100 mm的霍普金森杆装置对骨料率为0、32%、37%和42%的混凝土试样,分别进行了冲击速度为5、6、7 m/s的冲击压缩试验。探讨了冲击速度和骨料率对试样变形、动强度以及分形维数的影响,建立了动强度关于冲击速度和骨料率的表达式,并对试样吸收能和裂纹表面能之间的关系进行了对比分析。结果表明:混凝土试样破坏时出现了变形滞后现象,破坏形式主要以劈裂拉伸破坏为主;动强度随冲击速度、骨料率的增大而增大,用所建动强度公式可以较好地预估混凝土动强度;混凝土破坏碎块分形维数、吸收能和裂纹表面能均随冲击速度的增大而增大,随骨料率的增大而减小,且吸收能始终高于裂纹表面能,当骨料率为37%时,吸收能转化率最高,约91%转化为裂纹表面能。
  • 图  1  SHPB试验装置

    Figure  1.  SHPB test device

    图  2  SHPB试验原始波形图

    Figure  2.  Primitive waveform in SHPB test

    图  3  冲击速度不变时不同骨料率混凝土试样开裂状态

    Figure  3.  Cracking states of concrete specimens with different aggregate ratios at a certain impact velocity

    图  4  骨料率不变时不同冲击速度下混凝土试样开裂状态

    Figure  4.  Cracking states of concrete specimens with a fixed aggregate ratio at different impact velocities

    图  5  冲击速度为6 m/s时混凝土应力-应变时程曲线

    Figure  5.  Stress and strain history curves for concrete at an impact velocity of 6 m/s

    图  6  骨料率为32%时混凝土应力、应变时程曲线

    Figure  6.  Stress- and strain- time curves for concrete at the aggregate ratio of 32%

    图  7  混凝土应力-应变曲线

    Figure  7.  Stress-strain curves of concrete

    图  8  混凝土动强度与冲击速度拟合关系

    Figure  8.  Fitting relationships between concrete dynamic strength and impact velocity

    图  9  骨料率与材料参数的拟合关系

    Figure  9.  Fitting relationships between aggregate rates and material parameters

    图  10  混凝土动强度与冲击速度关系

    Figure  10.  Relationship between concrete dynamic strength and impact velocity

    图  11  分形维数双对数曲线

    Figure  11.  Double logarithmic curves of fractal dimension

    图  12  冲击速度、骨料率与分形维数关系

    Figure  12.  Relationships between impact velocity, aggregate ratio and fractal dimension

    图  13  不同冲击速度以及分形维数下的混凝土破坏形态

    Figure  13.  Concrete failure morphology at different impact speeds and fractal dimensions

    图  14  试样吸收能、裂纹表面能与骨料率关系

    Figure  14.  Relationships of absorbed energy and crack surface energy of the specimens with aggregate ratio

    图  15  试样吸收能、裂纹表面能与冲击速度关系

    Figure  15.  Relationships of absorbed energy and crack surface energy of the specimens with impact velocity

    图  16  冲击速度与α关系

    Figure  16.  Relationship between impact velocity and α

    表  1  混凝土配合比

    Table  1.   Concrete mix proportions

    骨料率/
    %
    水泥/
    (kg·m−3
    水/
    (kg·m−3
    砂/
    (kg·m−3
    碎石/
    (kg·m−3
    减水剂/
    (kg·m−3
    0321135194403.2
    3232113510738703.2
    3732113593710063.2
    4232113580111423.2
    下载: 导出CSV

    表  2  动强度与冲击速度拟合关系

    Table  2.   Fitting relationship between dynamic strength and impact velocity

    骨料/%拟合关系R2
    0$\sigma =84.36\;\text{ln}(v-3.38)$0.967
    32$\sigma =73.57\;\text{ln}(v-2.77)$0.960
    37$\sigma =71.19\;\text{ln}(v-2.31)$0.989
    42$\sigma =68.34\;\text{ln}(v-1.66)$0.980
    下载: 导出CSV

    表  3  单位表面能计算结果

    Table  3.   Calculation results of specific surface energy

    试样编号冲击速度/
    (m·s−1
    碎块新增
    面积/cm2
    吸收能量/J单位表面能/
    (J·cm−2
    T-0-143019.1141.780.014
    T-0-22805.3548.070.017
    T-32%-141647.8238.050.023
    T-32%-21706.4947.330.028
    T-37%-141101.3836.090.033
    T-37%-21350.7742.800.032
    T-42%-14872.5036.170.041
    T-42%-2792.7733.170.043
    下载: 导出CSV
  • [1] FALLON C, MCSHANE G J. Impact mitigating capabilities of a spray-on elastomer coating applied to concrete [J]. International Journal of Impact Engineering, 2019, 128: 72–85. DOI: 10.1016/j.ijimpeng.2019.02.003.
    [2] KOLCHUNOV V I, ANDROSO N B. Influence of the structure of the cross-section of load-bearing structures on their deformation during emergency actions [J]. IOP Conference Series: Materials Science and Engineering, 2018, 463(3). DOI: 10.1088/1757-899X/463/3/032067.
    [3] 高光发, 郭扬波. 高强混凝土动态压缩试验分析 [J]. 爆炸与冲击, 2019, 39(3): 63–72. DOI: 10.11883/bzycj-2017-0405.

    GAO G F, GUO Y B. Analysis of the dynamic compressive test of high strength concrete [J]. Explosion and Shock Waves, 2019, 39(3): 63–72. DOI: 10.11883/bzycj-2017-0405.
    [4] 刘传雄, 李玉龙, 吴子燕, 等. 混凝土材料的动态压缩破坏机理及本构关系 [J]. 振动与冲击, 2011, 30(5): 1–5. DOI: 10.13465/j.cnki.jvs.2011.05.015.

    LIU C X, LI Y L, WU Z Y, et al. Failure mechanism and constitutive model of a concrete material under dynamic compressive loads [J]. Journal of Vibration and Shock, 2011, 30(5): 1–5. DOI: 10.13465/j.cnki.jvs.2011.05.015.
    [5] 李庆斌, 郑丹. 混凝土动力强度提高的机理探讨 [J]. 工程力学, 2005, 22(S1): 188–193.

    LI Q B, ZHENG D. Micro-mechanism on the enhancement of dynamic strength for concrete [J]. Engineering Mechanics, 2005, 22(S1): 188–193.
    [6] EIBL J, CURBACH M. An attempt to explain strength increase due to high loading rates [J]. Nuclear Engineering & Design, 1989, 112: 45–50.
    [7] WEERHEIJM J, REINHARDT H W. Device for testing concrete under impact tensile loading and lateral compression [J]. Nuclear Engineering & Design, 1991, 126(3): 395–401. DOI: 10.1016/0029-5493(91)90028-G.
    [8] ROSSI P. Coupling between the crack propagation velocity and the vapour diffusion in concrete [J]. Materials and Structures, 1989, 22(2): 91–97. DOI: 10.1007/BF02472279.
    [9] ROSSI P. Influence of cracking in the presence of free water on the mechanical behaviour of concrete [J]. Magazine of Concrete Research, 2015, 43(154): 53–57. DOI: 10.1680/macr.1991.43.154.53.
    [10] GURUSIDESWAR S, SHUKLA A, JONNALAGADDA K N, et al. Tensile strength and failure of ultra-high performance concrete (UHPC) composition over a wide range of strain rates [J]. Construction and Building Materials, 2020, 258: 119642. DOI: 10.1016/j.conbuildmat.2020.119642.
    [11] 马怀发, 王立涛, 陈厚群, 等. 混凝土动态损伤的滞后特性 [J]. 水利学报, 2010, 41(6): 659–664. DOI: 10.13243/j.cnki.slxb.2010.06.013.

    MA H F, WANG L T, CHEN H Q, et al. Mechanism of dynamic damage delay characteristic of concrete [J]. Journal of Hydraulic Engineering, 2010, 41(6): 659–664. DOI: 10.13243/j.cnki.slxb.2010.06.013.
    [12] 秦川, 武明鑫, 张楚汉. 混凝土冲击劈拉实验与细观离散元数值仿真 [J]. 水利发电学报, 2013, 32(1): 196–205.

    QIN C, WU M X, ZHANG C H. Impact splitting tensile experiments of concrete and numerical modeling by meso-scale discrete elements [J]. Journal of Hydroelectric Engineering, 2013, 32(1): 196–205.
    [13] 党发宁, 焦凯, 潘峰. 混凝土抗折动强度及其极值研究 [J]. 爆炸与冲击, 2016, 36(3): 422–428. DOI: 10.11883/1001-1455(2016)03-0422-07.

    DANG F N, JIAO K, PAN F. Investigation on concrete dynamic bending intensity and limit flexural intensity [J]. Explosion and Shock Waves, 2016, 36(3): 422–428. DOI: 10.11883/1001-1455(2016)03-0422-07.
    [14] 谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探 [J]. 岩石力学与工程学报, 2005, 24(15): 2604–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001.

    XIE H P, PENG R D, JU Y, et al. On energy analysis of rock failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2604–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001.
    [15] 李庆华, 赵昕, 徐世烺. 纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究 [J]. 工程力学, 2017, 34(2): 85–93. DOI: 10.6052/j.issn.1000-4750.2015.06.0477.

    LI Q H, ZHAO X, XU S L. Impact compression properties of nano-sio2 modified ultrahigh toughness cementitious composites using a split Hopkinson pressure bar [J]. Engineering Mechanics, 2017, 34(2): 85–93. DOI: 10.6052/j.issn.1000-4750.2015.06.0477.
    [16] 巫绪涛, 代仁强, 陈德兴, 等. 钢纤维混凝土动态劈裂试验的能量耗散分析 [J]. 应用力学学报, 2009, 26(1): 151–154+218.

    WU X T, DAI R Q, CHEN D X, et al. Energy dissipation analysis on dynamic splitting-tensile test of steel fiber reinforced concrete [J]. Chinese Journal of Applied Mechanics, 2009, 26(1): 151–154+218.
    [17] LI Y, ZHAI Y, LIU X Y, et al. Research on fractal characteristics and energy dissipation of concrete suffered freeze-thaw cycle action and impact loading [J]. Materials, 2019, 12(16): 2585. DOI: 10.3390/ma12162585.
    [18] TAN Y, CHENG Y, LIU J, et al. Experimental study of the dynamic mechanical properties of high-performance equal-sized–aggregate concrete [J]. Journal of Materials in Civil Engineering, 2021, 33(2): 04020463. DOI: 10.1061/(ASCE)MT.1943-5533.0003474.
    [19] ZHANG Z X, KOU S Q, JIANG L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 745–762. DOI: 10.1016/S1365-1609(0)00008-3.
    [20] 翟越, 马国伟, 赵均海, 等. 花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较 [J]. 岩石力学与工程学报, 2007, 26(4): 762–768. DOI: 10.3321/j.issn:1000-6915.2007.04.015.

    ZHAI Y, MA G W, ZHAO J H, et al. Comparison of dynamic capabilities of granite and concrete under uniaxial impact compressive loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 762–768. DOI: 10.3321/j.issn:1000-6915.2007.04.015.
    [21] 李淼, 乔兰, 李庆文. 高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析 [J]. 岩土工程学报, 2017, 39(7): 1336–1343. DOI: 10.11779/CJGE201707021.

    LI M, QIAO L, LI Q W. Energy dissipation of rock specimens under high strain rate with single joint in SHPB tensile tests [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1336–1343. DOI: 10.11779/CJGE201707021.
    [22] 吕太洪, 陈小伟, 陈刚. 基于混凝土试样SHPB实验的波形特征分析 [J]. 解放军理工大学学报(自然科学版), 2016, 17(4): 345–349. DOI: 10.12018/j.issn.1009-3443.20160519005.

    LV T H, CHEN X W, CHEN G. Waveform features of split Hopkinson pressure bar tests of concrete specimen [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2016, 17(4): 345–349. DOI: 10.12018/j.issn.1009-3443.20160519005.
    [23] 马芹永, 高常辉. 冲击荷载下玄武岩纤维水泥土吸能及分形特征 [J]. 岩土力学, 2018, 39(11): 3921–3928;3968. DOI: 10.16285/j.rsm.2017.0666.

    MA Q Y, GAO C H. Energy absorption and fractal characteristics of basalt fiber-reinforced cement-soil under impact loads [J]. Rock and Soil Mechanics, 2018, 39(11): 3921–3928;3968. DOI: 10.16285/j.rsm.2017.0666.
    [24] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [25] 马菊荣, 刘海峰, 杨维武. 沙漠砂混凝土动态力学性能实验研究 [J]. 实验力学, 2015, 30(4): 491–498. DOI: 10.7520/1001-4888-14-171.

    MA J R, LIU H F, YANG W W. Experimrntal study of dynamic mechanical properties of desert sand concrete [J]. Journal of Experimental Mechanics, 2015, 30(4): 491–498. DOI: 10.7520/1001-4888-14-171.
    [26] 白二雷, 许金余, 高志刚. 冲击荷载作用下EPS混凝土动态性能研究 [J]. 振动与冲击, 2012, 31(13): 53–57. DOI: 10.3969/j.issn.1000-3835.2012.13.011.

    BAI E L, XU J Y, GAO Z G. Dynamic mechanical property of expanded polystyrene concrete under impact loading [J]. Journal of Vibration and Shock, 2012, 31(13): 53–57. DOI: 10.3969/j.issn.1000-3835.2012.13.011.
    [27] IBRAHIM S M, ALMUSALLAM T H. , AL-SALLOUM Y A, et al. Strain rate dependent behavior and modeling for compression response of hybrid fiber reinforced concrete[J]. Latin American Journal of Solids and Structures, 2019, 13(9). DOI: 10.1590/1679-78252717.
    [28] 李占金, 郝家旺, 甘德清, 等. 动载作用下磁铁矿石破坏特性实验研究 [J]. 振动与冲击, 2019, 38(12): 231–238; 245. DOI: 10.13465/j.cnki.jvs.2019.12.033.

    LI Z J, HAO J W, GAN D Q, et al. An experimental study on the failure characteristics of magnetite ore based on dynamic load [J]. Journal of Vibration and Shock, 2019, 38(12): 231–238; 245. DOI: 10.13465/j.cnki.jvs.2019.12.033.
    [29] 赵昕, 徐世烺, 李庆华. 高温后超高韧性水泥基复合材料冲击破碎分形特征分析 [J]. 土木工程学报, 2019, 52(2): 44–55. DOI: 10.15951/j.tmgcxb.2019.02.005.

    ZHAO X, XU S L, LI Q H. Fractal characteristics of fire-damaged ultrahigh toughness cementitious composite after impact loading [J]. China Civil Engineering Journal, 2019, 52(2): 44–55. DOI: 10.15951/j.tmgcxb.2019.02.005.
    [30] 平琦, 马芹永, 袁璞. 岩石试样SHPB劈裂拉伸试验中能量耗散分析 [J]. 采矿与安全工程学报, 2013, 30(3): 401–407.

    PING Q, MA Q Y, YUAN P. Energy dissipation analysis of stone specimens in SHPB tensile test [J]. Journal of Mining & Safety Engineering, 2013, 30(3): 401–407.
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  109
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2022-01-25
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回