一种水下爆炸冲击波压力调控方法

黄超 张磐 曾繁 徐维铮 王杰 刘娜

黄超, 张磐, 曾繁, 徐维铮, 王杰, 刘娜. 一种水下爆炸冲击波压力调控方法[J]. 爆炸与冲击, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450
引用本文: 黄超, 张磐, 曾繁, 徐维铮, 王杰, 刘娜. 一种水下爆炸冲击波压力调控方法[J]. 爆炸与冲击, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450
HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450
Citation: HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450

一种水下爆炸冲击波压力调控方法

doi: 10.11883/bzycj-2021-0450
基金项目: 中国工程物理研究院创新发展基金(PY20200150)
详细信息
    作者简介:

    黄 超(1984- ),男,博士,副研究员, huangchao21cn@126.com

  • 中图分类号: O382.1

A method for adjusting and controlling underwater explosion shock wave

  • 摘要: 起爆位置和装药形状对水下爆炸冲击波压力有较为显著的影响,这使得利用小当量装药在局部方向形成与大当量装药一定程度等效的冲击波成为可能。为了能够在小当量装药条件下开展舰船结构及设备抗水下爆炸冲击实验,基于细长装药结构和参数优化设计,设计了一种冲击波压力幅值和持续时间可调的装药方法。首先,基于简单波理论给出了水下爆炸冲击波压力调控的原理,以及装药参数优化设计的目标函数和约束条件;然后,采用自主数值模拟软件研究了细长装药的水下爆炸能量输出规律,通过实验验证了数值模拟的置信度,研究发现起爆位置和装药形状对水下爆炸冲击波压力峰值和持续时间的影响是显著的,在炸药爆速一定的情况下,长药柱水下爆炸冲击波压力的持续时间可通过几何近似确定;最后,为了进一步考察该方法的有效性,以1000 kg TNT和100 m爆距的水下爆炸冲击波压力-时间曲线作为原型,设计了2种与该原型冲击波压力等效的装药方案,并通过数值模拟进行了验证。研究结果表明:设计的装药能够在预定的持续时间内,在装药起爆端一侧形成与原型等效的冲击波压力-时间曲线。由于没有考虑对气泡载荷的等效,因此该调控方法仅适用于中远场爆炸冲击问题。
  • 图  1  不同相似准则下冲击波压力对比

    Figure  1.  Comparison of shock wave pressure curves under different similarity criteria

    图  2  细长装药水下爆炸冲击波的形成过程示意图

    Figure  2.  Formation of shock waves of slender charge underwater explosion

    图  3  装药设计方案

    Figure  3.  Design scheme of charge

    图  4  实验布置及测试系统

    Figure  4.  Experimental arrangement and measurement system

    图  5  冲击波压力-时间曲线的重复性实验结果对比

    Figure  5.  Comparison of repetitive experimental results of pressure-time curves

    图  6  冲击波压力-时间曲线的实验与模拟结果对比

    Figure  6.  Experimental and numerical pressure-time curves

    图  7  水下爆炸冲击波的压力传播过程

    Figure  7.  Propagation of underwater explosion shock wave

    图  8  方案1和方案2冲击波压力设计结果与原型对比

    Figure  8.  Comparison of shock wave pressure between the design and prototype curves

    图  9  方案1和方案2的冲击波压力数值模拟结果与原型对比

    Figure  9.  Comparison of shock wave pressure between the results of numerical simulation and prototype

    表  1  冲击波关键特征量定量对比

    Table  1.   Quantitative comparison of shock wave parameters

    测点ta/ms误差/%pm/MPa误差/%ts/ms误差/%I/(Pa·s)误差/%
    模拟实验模拟实验模拟实验模拟实验
    P11.881.995.501.665.6323.41.661.650.6044734890 8.5
    P23.483.521.101.183.82 3.71.181.201.703321371410.6
    P32.442.616.500.3222.10 24.40.320.333.0052305367 2.6
    P43.633.763.500.589.3310.40.580.603.303687321014.9
    P53.753.873.100.977.42 6.60.971.079.3037403773 0.9
    平均值  3.90  13.7  3.60   7.5
    下载: 导出CSV

    表  2  冲击波持续时间对比

    Table  2.   Comparison of shock wave duration

    测点方位/(°)ts/ms
    模拟实验式(11)
    P11801.661.651.62
    P3 900.320.330.29
    P5 00.971.071.04
    下载: 导出CSV

    表  3  水下爆炸冲击波压力调控方案

    Table  3.   Control design schemes of underwater explosion shock wave pressure

    调控方案材料ρ/(kg·m−3)te/msl/mmd1/mmd2/mmW/kgR/m
    1TNT15801.53 (ts)190060305.06.5
    2TNT15803.06 (2ts)380050256.97.0
    下载: 导出CSV
  • [1] 金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.

    JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
    [2] 吴桐, 冯麟涵. 冲击下舰载机柜内部冲击环境分析 [J]. 兵器装备工程学报, 2018, 39(10): 58–62. DOI: 10.11809/bqzbgexb2018.10.012.

    WU T, FENG L H. Analysis of shock environment in shipboard aircraft cabinet under shock [J]. Journal of Ordnance Equipment Engineering, 2018, 39(10): 58–62. DOI: 10.11809/bqzbgexb2018.10.012.
    [3] 王贡献, 褚德英, 张磊, 等. 舰船设备冲击试验机研究进展 [J]. 振动与冲击, 2007, 26(2): 152–159. DOI: 10.3969/j.issn.1000-3835.2007.02.037.

    WANG G X, CHU D Y, ZHANG L, et al. Advances in shock test facilities for shipboard equipments [J]. Journal of Vibration and Shock, 2007, 26(2): 152–159. DOI: 10.3969/j.issn.1000-3835.2007.02.037.
    [4] 刁爱民, 王慰慈, 朱金晏. 摆锤式冲击台与浮动冲击平台冲击动力特性对比试验研究 [J]. 舰船科学技术, 2019, 41(12): 203–205. DOI: 10.3404/j.issn.1672-7649.2019.12.039.

    DIAO A M, WANG W C, ZHU J Y. Experimental study on impact dynamics of pendulum impact table and floating impact platform [J]. Ship Science and Technology, 2019, 41(12): 203–205. DOI: 10.3404/j.issn.1672-7649.2019.12.039.
    [5] 陈学兵, 何斌, 陈辉, 等. 标准浮动冲击平台冲击环境试验及分析 [J]. 兵工学报, 2014, 35(S2): 8–12.

    CHEN X B, HE B, CHEN H, et al. Test and analysis about the shock environment of standard floating shock platform [J]. Acta Armamentarii, 2014, 35(S2): 8–12.
    [6] 王军, 姚熊亮, 郭君. 中型浮动冲击平台结构设计研究 [J]. 振动与冲击, 2014, 33(7): 86–91. DOI: 10.13465/j.cnki.jvs.2014.07.015.

    WANG J, YAO X L, GUO J. Structural design for a intermediate floating shock platform [J]. Journal of Vibration and Shock, 2014, 33(7): 86–91. DOI: 10.13465/j.cnki.jvs.2014.07.015.
    [7] 金辉, 高鑫, 奚慧魏, 等. 中型浮动冲击平台系统设计及冲击环境分析 [J]. 现代应用物理, 2019, 10(3): 66–71. DOI: 10.12061/j.issn.2095-6223.2019.031001.

    JIN H, GAO X, XI H W, et al. Design and impact environment analysis of medium floating shock platform [J]. Modern Applied Physics, 2019, 10(3): 66–71. DOI: 10.12061/j.issn.2095-6223.2019.031001.
    [8] 张磊, 杜志鹏, 吴静波, 等. 200t级浮动冲击平台水下爆炸试验低频冲击响应数据分析 [J]. 中国舰船研究, 2018, 13(3): 60–65. DOI: 10.19693/j.issn.1673-3185.01149.

    ZHANG L, DU Z P, WU J B, et al. Low-frequency shock response data analysis of underwater explosion test of 200-ton class floating shock platform [J]. Chinese Journal of Ship Research, 2018, 13(3): 60–65. DOI: 10.19693/j.issn.1673-3185.01149.
    [9] 张效慈. 水下爆炸试验相似准则 [J]. 船舶力学, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.

    ZHANG X C. Similarity criteria for experiment of underwater explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.
    [10] GAO Y, WANG S S, ZHANG J X, et al. Effects of underwater explosion depth on shock wave overpressure and energy [J]. Physics of Fluids, 2022, 34(3): 037108. DOI: 10.1063/5.0081107.
    [11] COLE R H. Underwater explosions [M]. New Jersey: Princeton University Press, 1948: 252–253.
    [12] HAMMOND L. Underwater shock wave characteristics of cylindrical charges: DSTO-GD-0029 [R]. Australia: Aeronautical and Maritime Research Laboratory, 1995.
    [13] STERNBERG H M. Underwater detonation of pentolite cylinders [J]. Physics of Fluids, 1987, 30(3): 761–769. DOI: 10.1063/1.866326.
    [14] 赵继波, 谭多望, 李金河, 等. TNT药柱水中爆炸近场压力轴向衰减规律 [J]. 爆炸与冲击, 2008, 28(6): 539–543. DOI: 10.11883/1001-1455(2008)06-0539-05.

    ZHAO J B, TAN D W, LI J H, et al. Axial pressure damping of cylindrical TNT charges in the near underwater-explosion field [J]. Explosion and Shock Waves, 2008, 28(6): 539–543. DOI: 10.11883/1001-1455(2008)06-0539-05.
    [15] 李金河, 赵继波, 谭多望, 等. 不同起爆方式对含铝炸药水中爆炸近场冲击波压力的影响 [J]. 高压物理学报, 2012, 26(3): 289–293. DOI: 10.11858/gywlxb.2012.03.007.

    LI J H, ZHAO J B, TAN D W, et al. Effect on the near field shock wave pressure of underwater explosion of aluminized explosive at different initiation modes [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 289–293. DOI: 10.11858/gywlxb.2012.03.007.
    [16] 王长利, 周刚, 马坤, 等. 聚能装药水下爆炸冲击波载荷规律 [J]. 高压物理学报, 2017, 31(4): 453–461. DOI: 10.11858/gywlxb.2017.04.014.

    WANG C L, ZHOU G, MA K, et al. Shockwave characteristics of shaped charge exploded underwater [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 453–461. DOI: 10.11858/gywlxb.2017.04.014.
    [17] ZHANG A M, WANG S P, HUANG C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics [J]. European Journal of Mechanics-B/Fluids, 2013, 42: 69–91. DOI: 10.1016/j.euromechflu.2013.06.008.
    [18] ZHANG A M, YANG W S, HUANG C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination [J]. Computers & Fluids, 2013, 71: 169–178. DOI: 10.1016/j.compfluid.2012.10.012.
    [19] 黄超, 汪斌, 刘仓理, 等. 非球形水下爆炸气泡坍塌机制 [J]. 高压物理学报, 2012, 26(5): 501–507. DOI: 10.11858/gywlxb.2012.05.004.

    HUANG C, WANG B, LIU C L, et al. On the mechanism of non-spherical underwater explosion bubble collapse [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 501–507. DOI: 10.11858/gywlxb.2012.05.004.
    [20] ZHANG Z F, WANG C, WANG L K, et al. Underwater explosion of cylindrical charge near plates: analysis of pressure characteristics and cavitation effects [J]. International Journal of Impact Engineering, 2018, 121: 91–105. DOI: 10.1016/j.ijimpeng.2018.06.009.
    [21] HUANG C, LIU M B, WANG B, et al. Underwater explosion of slender explosives: directional effects of shock waves and structure responses [J]. International Journal of Impact Engineering, 2019, 130: 266–280. DOI: 10.1016/j.ijimpeng.2019.04.018.
    [22] 徐维铮, 黄超, 张磐, 等. 锥形长药柱水下爆炸冲击波参数计算方法 [J]. 爆炸与冲击, 2022, 42(1): 014203. DOI: 10.11883/bzycj-2021-0095.

    XU W Z, HUANG C, ZHANG P, et al. A method for calculating underwater explosion shock wave parameters of slender cone-shaped charges [J]. Explosion and Shock Waves, 2022, 42(1): 014203. DOI: 10.11883/bzycj-2021-0095.
    [23] 孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 228–230.

    SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 228–230.
    [24] 曾令玉, 蔡尚, 王诗平. 水下爆炸气泡对舰船冲击环境的影响 [J]. 中国舰船研究, 2018, 13(3): 66–71. DOI: 10.19693/j.issn.1673-3185.01033.

    ZENG L Y, CAI S, WANG S P. Effects of underwater explosion bubble on shock environment of warship [J]. Chinese Journal of Ship Research, 2018, 13(3): 66–71. DOI: 10.19693/j.issn.1673-3185.01033.
    [25] 王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.

    WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
    [26] TIAN Z L, LIU Y L, ZHANG A M, et al. Jet development and impact load of underwater explosion bubble on solid wall [J]. Applied Ocean Research, 2020, 95: 102013. DOI: 10.1016/j.apor.2019.102013.
    [27] 黄超, 汪斌, 姚熊亮, 等. 实验室尺度水下爆炸气泡实验方法 [J]. 传感器与微系统, 2011, 30(12): 75–77, 81. DOI: 10.3969/j.issn.1000-9787.2011.12.023.

    HUANG C, WANG B, YAO X L, et al. Laboratory-scale underwater explosion bubble experiment method [J]. Transducer and Microsystem Technologies, 2011, 30(12): 75–77, 81. DOI: 10.3969/j.issn.1000-9787.2011.12.023.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  179
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 修回日期:  2022-04-23
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回