受轴向冲击薄壁圆管的几何畸变相似律研究

杨磊峰 常新哲 徐绯 王帅 刘小川 惠旭龙 李肖成

杨磊峰, 常新哲, 徐绯, 王帅, 刘小川, 惠旭龙, 李肖成. 受轴向冲击薄壁圆管的几何畸变相似律研究[J]. 爆炸与冲击, 2022, 42(5): 053205. doi: 10.11883/bzycj-2021-0452
引用本文: 杨磊峰, 常新哲, 徐绯, 王帅, 刘小川, 惠旭龙, 李肖成. 受轴向冲击薄壁圆管的几何畸变相似律研究[J]. 爆炸与冲击, 2022, 42(5): 053205. doi: 10.11883/bzycj-2021-0452
YANG Leifeng, CHANG Xinzhe, XU Fei, WANG Shuai, LIU Xiaochuan, XI Xulong, LI Xiaocheng. Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact[J]. Explosion And Shock Waves, 2022, 42(5): 053205. doi: 10.11883/bzycj-2021-0452
Citation: YANG Leifeng, CHANG Xinzhe, XU Fei, WANG Shuai, LIU Xiaochuan, XI Xulong, LI Xiaocheng. Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact[J]. Explosion And Shock Waves, 2022, 42(5): 053205. doi: 10.11883/bzycj-2021-0452

受轴向冲击薄壁圆管的几何畸变相似律研究

doi: 10.11883/bzycj-2021-0452
基金项目: 国家自然科学基金(11972309);中央高校基本科研业务费专项资金(310201901A012);高等学校学科创新引智计划(111计划)(BP0719007)
详细信息
    作者简介:

    杨磊峰(1997- ),男,硕士研究生,409332963@mail.nwpu.edu.cn

    通讯作者:

    徐 绯(1970- ),女,博士,教授,xufei@nwpu.edu.cn

  • 中图分类号: O347.3;V214.4

Study on the scaling law of geometrically-distorted thin-walled cylindrical shells subjected to axial impact

  • 摘要: 对于受轴向冲击载荷作用的薄壁圆管动态响应的相似律问题,由于圆管的薄壁特性导致厚度无法与高度和半径按相同的比例进行结构缩放,从而产生模型的几何畸变,此时传统的相似律已无法描述原型与畸变模型之间的动态响应规律。基于薄壁圆管轴向冲击问题的控制方程,通过能量守恒和量纲分析,推导了考虑几何畸变条件下轴向冲击载荷作用的理想弹塑性薄壁圆管动态响应的相似律。通过在给定应变与应变率区间上建立比例模型预测的流动屈服应力与原型流动屈服应力的最佳逼近关系,将几何畸变相似律进一步推广至包含应变率和应变硬化的材料。通过数值方法验证了提出的几何畸变模型相似律的适用性。分析结果表明,提出的考虑厚度畸变的受轴向冲击薄壁圆管的相似律可用于预测原型结构的冲击动态响应,并显著降低比例模型与原型结构平均载荷和能量的偏差。
  • 图  1  轴向受压薄壁圆管的轴对称压溃模式

    Figure  1.  Axisymmetric crushing mode of the thin-walled cylindrical shell under axial compression

    图  2  金属材料应力-应变曲线

    Figure  2.  Stress-strain curves of metal materials

    图  3  受轴向冲击的薄壁圆管示意图

    Figure  3.  Schematic diagram of a thin-walled cylindrical shell under axial impact

    图  4  原型与比例模型的动态响应-时间曲线

    Figure  4.  Dynamic response-time curves of the scale models and the prototype

    图  5  修正后的比例模型与原型的动态响应-时间曲线

    Figure  5.  Dynamic response-time curves of the modified scaled models and the prototype

    表  1  纯几何相似律比例因子[10-11]

    Table  1.   Scaling factors by pure geometric similarity[10-11]

    变量比例因子变量比例因子
    长度L[10]$\ \beta = {L_{\rm{m}}}/{L_{\rm{p}}}$ 位移δ[10]$\ {\beta _\delta } = \beta $
    密度ρ[10]$\ {\beta _\rho } = {\rho _{\rm{m}}}/{\rho _{\rm{p}}}$ 应力${\sigma _{\rm{d}}}$[10]$\ {\beta _{{\sigma _{\rm{d}}}}} = {\beta _\rho }\beta _v^2$
    速度v[10]$\ {\beta _v} = {v_{\rm{m}}}/{v_{\rm{p}}}$ 应变ε[10]$\ {\beta _\varepsilon } = 1$
    质量m[10]$\ {\beta _{{m} } } = {\beta _\rho }{\beta ^3}$ 应变率$\dot \varepsilon $[10]$\ {\beta _{\dot \varepsilon }} = {\beta _v}/\beta $
    时间t[10]$\ {\beta _{{t} } } = \beta /{\beta _v}$ 载荷P[11]$\ {\beta _{{P} } } = {\beta _\rho }{\beta ^2}\beta _v^2$
    加速度a[10]$\ {\beta _a} = \beta _v^2/\beta $ 动能Ek[11]$\ {\beta _{ {E_{\rm{k}}} } } = {\beta _\rho }{\beta ^3}\beta _v^2$
    下载: 导出CSV

    表  2  受轴向冲击的理想弹塑性薄壁圆管比例因子

    Table  2.   Scaling factors of the elastic-ideal plastic thin-walled cylindrical shell under axial impact loading

    变量比例因子变量比例因子
    长度L$\ \beta = {L_{\rm{m}}}/{L_{\rm{p}}}$位移δ$\ {\beta _\delta } = \beta $
    密度ρ$\ {\beta _\rho } = {\rho _{\rm{m}}}/{\rho _{\rm{p}}}$应力${\sigma _{\rm{d}}}$$\ {\beta _{{\sigma _{\rm{d}}}}} = {\beta _\rho }\beta _v^2\sqrt {\beta /{\beta _{\rm{h}}}} $
    速度v$\ {\beta _v} = {v_{\rm{m}}}/{v_{\rm{p}}}$应变ε$\ {\beta _\varepsilon } = \sqrt {{\beta _h}/\beta } $
    质量m$\ {\beta _{{m} } } = {\beta _\rho }{\beta ^2}{\beta _h} $应变率$\dot \varepsilon $$\ {\beta _{\dot \varepsilon }} = \left( {{\beta _v}/\beta } \right)\sqrt {{\beta _L}/{\beta _h}} $
    时间t$\ {\beta _{{t} } } = \beta /{\beta _v}$载荷P$\ {\beta _{{P} } } = {\beta _\rho }\beta {\beta _h}\beta _v^2$
    加速度 a$\ {\beta _a} = \beta _v^2/\beta $动能Ek$\ {\beta _{E_{\rm{k} } } } = {\beta _\rho }{\beta _h}{\beta ^2}\beta _v^2$
    下载: 导出CSV

    表  3  1006 钢的材料参数[24]

    Table  3.   Material parameters of 1006 steel[24]

    ρ/(g∙cm−3)E/GPaμA/MPaB/MPaCn${\dot \varepsilon _0}/\text{s}^{-1}$
    7.892070.33502750.0220.361
    下载: 导出CSV

    表  4  理想弹塑性模型几何畸变比例因子

    Table  4.   Scaling factors of geometrically-distorted models of elastic-ideal plastic material

    $\ \beta $η${\ \beta _h}$${\ \beta _M}$${\ \beta _v}$${\ \beta _t}$${\ \beta _P}$${\ \beta _\delta }$${\ \beta _\varepsilon }$
    0.11.20.120.121.04660.09550.01310.11.0954
    0.11.50.150.151.10670.09040.01840.11.2247
    0.11.80.180.181.15830.08630.02410.11.3416
    0.12.00.200.201.18920.08410.02830.11.4142
    下载: 导出CSV

    表  5  考虑应变率效应和应变硬化效应几何畸变模型比例因子

    Table  5.   Scaling factors of geometrically-distorted models considering strain-rate sensitivity and strain hardening

    $\ \beta $η${\ \beta _h}$${\ \beta _M}$${\ \beta _v}$${\ \beta _t}$${\ \beta _P}$${\ \beta _\delta }$${\ \beta _\varepsilon }$
    0.11.20.120.121.07560.09300.01390.11.0954
    0.11.50.150.151.14420.08740.01960.11.2247
    0.11.80.180.181.20380.08310.02610.11.3416
    0.12.00.200.201.23960.08070.03060.11.4142
    下载: 导出CSV

    表  6  比例模型与原型的峰值位移和平均载荷相对误差

    Table  6.   Relative errors in the peak displacement and average force between the scale models and prototype

    模型δ/βδ)/mm相对误差/%P/βP/kN相对误差/%
    原型124.25871.95
    β=1/10, η=1.2121.6692.08473.432.057
    β=1/10, η=1.5120.6512.90369.483.433
    β=1/10, η=1.8118.6424.52075.855.420
    β=1/10, η=2.0117.6785.29572.250.417
    下载: 导出CSV

    表  7  考虑应变率与应变硬化效应的比例模型位移与平均载荷相对误差

    Table  7.   Relative errors in the peak displacement and average force of the scaled models considering strain-rate sensitivity and strain hardening

    模型(δ/βδ) /mm相对误差/%(P/βP)/kN相对误差/%
    原型90.74097.79
    β=1/10, η=1.289.6191.23598.420.644
    β=1/10, η=1.589.2221.67399.471.718
    β=1/10, η=1.886.2015.002101.063.344
    β=1/10, η=2.086.2324.968105.147.516
    下载: 导出CSV
  • [1] JONES N. Structural impact [M]. 2nd ed. New York: Cambridge University Press, 2012.
    [2] 徐海斌, 张德志, 谭书舜, 等. 轴向压缩的金属薄壁圆管相似律的实验研究 [C] // 第20届全国结构工程学术会议论文集. 浙江宁波: 中国力学学会工程力学编辑部, 2011: 554–559.
    [3] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10–15. DOI: 10.1093/qjmam/13.1.10.
    [4] ABRAMOWICZ W, JONES N. Dynamic axial crushing of circular tubes [J]. International Journal of Impact Engineering, 1984, 2(3): 263–281. DOI: 10.1016/0734-743X(84)90010-1.
    [5] KARAGIOZOVA D, JONES N. Influence of stress waves on the dynamic progressive and dynamic plastic buckling of cylindrical shells [J]. International Journal of Solids and Structures, 2001, 38(38/39): 6723–6749. DOI: 10.1016/S0020-7683(01)00111-1.
    [6] KARAGIOZOVA D, NURICK G N, YUEN S C K. Energy absorption of aluminium alloy circular and square tubes under an axial explosive load [J]. Thin-Walled Structures, 2005, 43(6): 956–982. DOI: 10.1016/j.tws.2004.11.002.
    [7] LU G, YU J L, ZHANG J J, et al. Alexander revisited: upper- and lower-bound approaches for axial crushing of a circular tube [J]. International Journal of Mechanical Sciences, 2021, 206: 106610. DOI: 10.1016/j.ijmecsci.2021.106610.
    [8] CASABURO A, PETRONE G, FRANCO F, et al. A review of similitude methods for structural engineering [J]. Applied Mechanics Reviews, 2019, 71(3): 030802. DOI: 10.1115/1.4043787.
    [9] COUTINHO C P, BAPTISTA A J, RODRIGUES J D. Reduced scale models based on similitude theory: a review up to 2015 [J]. Engineering Structures, 2016, 119: 81–94. DOI: 10.1016/j.engstruct.2016.04.016.
    [10] OSHIRO R E, ALVES M. Scaling impacted structures [J]. Archive of Applied Mechanics, 2004, 74(1/2): 130–145. DOI: 10.1007/BF02637214.
    [11] OSHIRO R E, ALVES M. Scaling of cylindrical shells under axial impact [J]. International Journal of Impact Engineering, 2007, 34(1): 89–103. DOI: 10.1016/j.ijimpeng.2006.02.003.
    [12] 王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究 [J]. 力学学报, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.

    WANG S, XU F, DAI Z, et al. A direct scaling method for the distortion problems of structural impact [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 774–786. DOI: 10.6052/0459-1879-19-327.
    [13] WANG S, XU F, ZHANG X Y, et al. Material similarity of scaled models [J]. International Journal of Impact Engineering, 2021, 156: 103951. DOI: 10.1016/j.ijimpeng.2021.103951.
    [14] 李肖成, 徐绯, 杨磊峰, 等. 薄板在冲击载荷下线弹性理想塑性响应的相似性研究 [J]. 爆炸与冲击, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.

    LI X C, XU F, YANG L F, et al. Study on the similarity of elasticity and ideal plasticity response of thin plate under impact loading [J]. Explosion and Shock Waves, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
    [15] 秦健, 张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法 [J]. 爆炸与冲击, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.

    QIN J, ZHANG Z H. A scaling method for predicting dynamic responses of stiffened plates made of materials different from experimental models [J]. Explosion and Shock Waves, 2010, 30(5): 511–516. DOI: 10.11883/1001-1455(2010)05-0511-06.
    [16] ALVES M, OSHIRO R E, CALLE M A G, et al. Scaling and structural impact [J]. Procedia Engineering, 2017, 173: 391–396. DOI: 10.1016/j.proeng.2016.12.036.
    [17] MAZZARIOL L M, ALVES M. Similarity laws of structures under impact load: geometric and material distortion [J]. International Journal of Mechanical Sciences, 2019, 157/158: 633–647. DOI: 10.1016/j.ijmecsci.2019.05.011.
    [18] WANG S, XU F, DAI Z. Suggestion of the DLV dimensionless number system to represent the scaled behavior of structures under impact loads [J]. Archive of Applied Mechanics, 2020, 90(4): 707–719. DOI: 10.1007/s00419-019-01635-9.
    [19] WANG S, XU F, ZHANG X Y, et al. A directional framework of similarity laws for geometrically distorted structures subjected to impact loads [J]. International Journal of Impact Engineering, 2022, 161: 104092. DOI: 10.1016/j.ijimpeng.2021.104092.
    [20] 李志斌, 虞吉林, 郑志军, 等. 薄壁管及其泡沫金属填充结构耐撞性的实验研究 [J]. 实验力学, 2012, 27(1): 77–86.

    LI Z B, YU J L, ZHENG Z J, et al. An experimental study on the crashworthiness of thin-walled tubes and their metallic foam-filled structures [J]. Journal of Experimental Mechanics, 2012, 27(1): 77–86.
    [21] 朱文波, 杨黎明, 余同希. 薄壁圆管轴向冲击下的动态特性研究 [J]. 宁波大学学报(理工版), 2014, 27(2): 92–96.

    ZHU W B, YANG L M, YU T X. Study on dynamic properties of thin-walled circular tubes under axial compression [J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2014, 27(2): 92–96.
    [22] 余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析 [M]. 北京: 科学出版社, 2019.
    [23] 白以龙, 黄筑平, 虞吉林, 等. 材料和结构的动态响应 [M]. 合肥: 中国科学技术大学出版社, 2005.
    [24] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C] // Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands, 1983: 541–547.
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  212
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-01-04
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回