内爆磁压缩准等熵加载过程分析与实验验证

陆禹 谷卓伟 周中玉 孙承纬

陆禹, 谷卓伟, 周中玉, 孙承纬. 内爆磁压缩准等熵加载过程分析与实验验证[J]. 爆炸与冲击, 2022, 42(7): 074101. doi: 10.11883/bzycj-2021-0453
引用本文: 陆禹, 谷卓伟, 周中玉, 孙承纬. 内爆磁压缩准等熵加载过程分析与实验验证[J]. 爆炸与冲击, 2022, 42(7): 074101. doi: 10.11883/bzycj-2021-0453
LU Yu, GU Zhuowei, ZHOU Zhongyu, SUN Chengwei. Analysis and experimental verification of quasi-isentropic loading process in explosive-driven magnetic flux compression[J]. Explosion And Shock Waves, 2022, 42(7): 074101. doi: 10.11883/bzycj-2021-0453
Citation: LU Yu, GU Zhuowei, ZHOU Zhongyu, SUN Chengwei. Analysis and experimental verification of quasi-isentropic loading process in explosive-driven magnetic flux compression[J]. Explosion And Shock Waves, 2022, 42(7): 074101. doi: 10.11883/bzycj-2021-0453

内爆磁压缩准等熵加载过程分析与实验验证

doi: 10.11883/bzycj-2021-0453
基金项目: 国家自然科学基金(11672276)
详细信息
    作者简介:

    陆 禹(1992- ),男,博士研究生,luyuustc@mail.ustc.edu.cn

    通讯作者:

    谷卓伟(1969- ),男,博士,研究员,guzhw1969@126.com

  • 中图分类号: O361.3

Analysis and experimental verification of quasi-isentropic loading process in explosive-driven magnetic flux compression

  • 摘要: 利用磁流体力学程序SSS-MHD模拟了炸药柱面内爆磁通量压缩发生器CJ-100装置的加载过程,讨论了各项装置参数的影响,结果表明装置可达到的峰值磁场值与初始磁场值成反比关系。设计了铁/铜夹层结构的样品靶,在该型装置上开展纯铁的准等熵加载实验。利用光子多普勒测速探头测量到6.43 km/s的样品靶自由面速度,在DT4铁中获得206 GPa的准等熵加载压力。铁材料的压力-比容曲线与理论等熵线基本重合,表明内爆磁压缩加载过程具有较高的等熵程度。
  • 图  1  CJ-100实验系统[10]

    Figure  1.  Experimental system of CJ-100

    图  2  CJ-100型装置的结构示意图和照片

    Figure  2.  Schematic design and photo of CJ-100 device

    图  3  CJ-100型装置的MHD计算模型

    Figure  3.  MHD modeling of CJ-100 device

    图  4  峰值压缩磁场和回转半径随初始磁场的变化曲线

    Figure  4.  Peak magnetic field and turning radius curves with different initial magnetic fields

    图  5  不同初始磁场情况下的磁场-时间曲线

    Figure  5.  Magnetic field vs. time curves with different initial magnetic fields

    图  6  样品靶的结构示意图

    Figure  6.  Structure diagram of sample target

    图  7  不同初始参数下铜夹层靶中的加载压力峰值

    Figure  7.  Peak loading pressure of Cu layered target with different initial parameters

    图  8  铜夹层靶的位置-时间曲线和压力-时间曲线

    Figure  8.  Position vs. time curve and loading pressure vs. time curve of Cu layered target

    图  9  铁/铜夹层样品靶结构示意图

    Figure  9.  Structure diagram of Fe/Cu layered target

    图  10  样品靶自由面速度的实验曲线和计算曲线

    Figure  10.  Measured and simulated free-surface velocity curves of sample target

    图  11  在17.1 μs时样品靶中静水压力、磁压力和材料密度的空间分布

    Figure  11.  Spatial distributions of hydro pressure, magnetic pressure and density in the sample target at 17.1 μs

    图  12  铁材料的压力-比容变化曲线

    Figure  12.  Pressure vs. specific volume curve in iron at Fe/Cu interface

    图  13  铁的相图[21]和SSS-MHD程序计算的温度-压力加载路径

    Figure  13.  Phase diagram of iron [21] and temperature vs. pressure curve calculated by SSS-MHD

    图  14  铜/铁界面内侧处铁材料的静水压力-时间曲线

    Figure  14.  Hydrostatic pressure vs. time curve of iron at inner side of copper/iron interface

  • [1] ALTGILBERS L L, BROWN M D J, GRISHNAEV I, 等. 磁通量压缩发生器 [M]. 孙承纬, 周之奎, 译. 北京: 国防工业出版社, 2008: 1–5.
    [2] 谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.

    GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.
    [3] SAKHAROV A D, LYUDAEV R Z, SMIRNOV E N, et al. Magnetic cumulation [J]. Soviet Physics Uspekhi, 1991, 34(5): 385–386. DOI: 10.3367/UFNr.0161.199105f.0047.
    [4] BOYKO B A, BYKOV A I, DOLOTENKO M I, et al. More than 20 MG magnetic field generation in the cascade magnetocumulative MC-1 generator[M]// Megagauss Magnetic Field Generation, its Application to Science and Ultra-High Pulsed-Power Technology. Tallahassee: World Scientific Publishing, 2004: 61–66. DOI: 10.1142/9789812702517_0009.
    [5] FOWLER C M, GARN W B, CAIRD R S. Production of very high magnetic fields by implosion [J]. Journal of Applied Physics, 1960, 31(3): 588–594. DOI: 10.1063/1.1735633.
    [6] HAWKE R S, DUERRE D E, HUEBEL J G, et al. Method of isentropically compressing materials to several megabars [J]. Journal of Applied Physics, 1972, 43(6): 2734–2741. DOI: 10.1063/1.1661586.
    [7] HERLACH F, KNOEPFEL H. Megagauss fields generated in explosive - driven flux compression devices [J]. Review of Scientific Instruments, 1965, 36(8): 1088–1095. DOI: 10.1063/1.1719809.
    [8] BYKOV A I, DOLOTENKO M I, KOLOKOL’CHIKOV N P, et al. The cascade magnetocumulative generator of ultrahigh magnetic fields: a reliable tool for megagauss physics [J]. Physica B:Condensed Matter, 1996, 216(3/4): 215–217. DOI: 10.1016/0921-4526(95)00475-0.
    [9] 陈学印, 龚兴根, 陈英石, 等. 爆炸磁通量压缩装置的实验研究 [A]. 王淦昌论文选集, 1987: 151–153.
    [10] ZHOU Z Y, GU Z W, LUO H, et al. A compact explosive-driven flux compression generator for reproducibly generating multimegagauss fields [J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3279–3283. DOI: 10.1109/TPS.2018.2794761.
    [11] WENG J D, TAN H, HU S L, et al. New all-fiber velocimeter [J]. Review of Scientific Instruments, 2005, 76(9): 093301. DOI: 10.1063/1.2008989.
    [12] 畅里华, 汪伟, 谷卓伟, 等. 柱面内爆磁通量压缩超高速摄影技术研究 [J]. 光学学报, 2015, 35(10): 1032001. DOI: 10.3788/AOS201535.1032001.

    CHANG L H, WANG W, GU Z W, et al. Study on magnetic flux compression by cylindrical implosion using ultrahigh-speed photography technology [J]. Acta Optica Sinica, 2015, 35(10): 1032001. DOI: 10.3788/AOS201535.1032001.
    [13] 赵继波, 孙承纬, 谷卓伟, 等. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析 [J]. 物理学报, 2015, 64(8): 080701. DOI: 10.7498/aps.64.080701.

    ZHAO J B, SUN C W, GU Z W, et al. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process [J]. Acta Physica Sinica, 2015, 64(8): 080701. DOI: 10.7498/aps.64.080701.
    [14] MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2008: 384–387.
    [15] 孙承纬. 一维冲击波和爆轰波计算程序SSS [J]. 计算物理, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.

    SUN C W. SSS: a code for computing one dimensional shock and detonation wave propagation [J]. Chinese Journal of Computational Physics, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.
    [16] BURGESS T J. Electrical resistivity model of metals [C]// Proceedings of the 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics. Santa: Plenum Press, 1986: 307–316.
    [17] 李茂生, 陈栋泉. 高温高压下材料的本构模型 [J]. 高压物理学报, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004.

    LI M S, CHEN D Q. A constitutive model for materials under high-temperature and pressure [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004.
    [18] MCQUEEN R G, MARSH S P. Equation of state for nineteen metallic elements from shock-wave measurements to two megabars [J]. Journal of Applied Physics, 1960, 31(7): 1253–1269. DOI: 10.1063/1.1735815.
    [19] HIXSON R S, FRITZ J N. Shock compression of iron [M]// SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter, 1991. Amsterdam: North-Holland, 1992: 69–70.
    [20] BARKER L M, HOLLENBACH R E. Shock wave study of the α $\rightleftarrows $ ε phase transition in iron [J]. Journal of Applied Physics, 1974, 45(11): 4872–4887. DOI: 10.1063/1.1663148.
    [21] SANO T, MORI H, SAKATA O, et al. Femtosecond laser driven shock synthesis of the high-pressure phase of iron [J]. Applied Surface Science, 2005, 247: 571–576. DOI: 10.1016/j.apsusc.2005.01.050.
  • 加载中
图(14)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  117
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-01-17
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回