Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

内爆磁压缩准等熵加载过程分析与实验验证

陆禹 谷卓伟 周中玉 孙承纬

喻健良, 孙会利, 纪文涛, 闫兴清, 张新燕, 蔡林锋. 甲烷/石松子两相混合体系爆炸强度参数[J]. 爆炸与冲击, 2018, 38(1): 92-97. doi: 10.11883/bzycj-2016-0276
引用本文: 陆禹, 谷卓伟, 周中玉, 孙承纬. 内爆磁压缩准等熵加载过程分析与实验验证[J]. 爆炸与冲击, 2022, 42(7): 074101. doi: 10.11883/bzycj-2021-0453
YU Jianliang, SUN Huili, JI Wentao, YAN Xingqing, ZHANG Xinyan, CAI Linfeng. Explosion severity parameters of hybrid mixture of methane and lycopodium dust[J]. Explosion And Shock Waves, 2018, 38(1): 92-97. doi: 10.11883/bzycj-2016-0276
Citation: LU Yu, GU Zhuowei, ZHOU Zhongyu, SUN Chengwei. Analysis and experimental verification of quasi-isentropic loading process in explosive-driven magnetic flux compression[J]. Explosion And Shock Waves, 2022, 42(7): 074101. doi: 10.11883/bzycj-2021-0453

内爆磁压缩准等熵加载过程分析与实验验证

doi: 10.11883/bzycj-2021-0453
基金项目: 国家自然科学基金(11672276)
详细信息
    作者简介:

    陆 禹(1992- ),男,博士研究生,luyuustc@mail.ustc.edu.cn

    通讯作者:

    谷卓伟(1969- ),男,博士,研究员,guzhw1969@126.com

  • 中图分类号: O361.3

Analysis and experimental verification of quasi-isentropic loading process in explosive-driven magnetic flux compression

  • 摘要: 利用磁流体力学程序SSS-MHD模拟了炸药柱面内爆磁通量压缩发生器CJ-100装置的加载过程,讨论了各项装置参数的影响,结果表明装置可达到的峰值磁场值与初始磁场值成反比关系。设计了铁/铜夹层结构的样品靶,在该型装置上开展纯铁的准等熵加载实验。利用光子多普勒测速探头测量到6.43 km/s的样品靶自由面速度,在DT4铁中获得206 GPa的准等熵加载压力。铁材料的压力-比容曲线与理论等熵线基本重合,表明内爆磁压缩加载过程具有较高的等熵程度。
  • 随着工业的快速发展,可燃气体、粉尘共存的工况不断出现,如煤炭开采中的瓦斯与煤尘、制药行业的溶剂蒸气与药粉、印刷行业的溶剂蒸气与色素粉、塑料行业的乙烯与聚乙烯粉等[1-2]。气/粉两相混合体系爆炸事故已在工业粉尘爆炸事故总数中占相当比例[3]。因此,气/粉两相体系爆炸特性逐渐引起研究人员的关注。Cashdollar等[4]、Dufaud等[5]、Sanchirico等[6]通过实验发现体积分数低于单相气体爆炸下限的可燃气体和可燃粉尘混合后可以被点燃,仍具有爆炸的危险性。Bartknecht等[7]开展实验探索甲烷、丙烷和丁烷气体对纤维素粉爆炸强度作用规律,结果表明3种烷烃气体均能引起粉尘最大爆炸压力的上升。Denkevits等[8]通过实验发现氢气/铝粉两相爆炸压力及压力上升速率与单相爆炸相比都显著提升。Amyotte等[9-10]实验研究了乙烯/聚乙烯等两相体系的爆炸特性,得出乙烯的添加能够引起聚乙烯粉尘爆炸指数显著提升。Liu等[11]利用3.2 L长方形容器研究甲烷/煤粉混合物的火焰传播,得出甲烷和煤粉共存显著加快了爆炸火焰传播速度,并且提高了最高火焰温度。上述研究从宏观上初步明确了可燃气体能够显著提高粉尘爆炸感度、强度等参数,即提高粉尘爆炸危险性。但现有的研究还无法解释气/粉两相体系爆炸参数的变化规律,需要继续深入开展研究。并且已开展的研究多关注低体积分数气体对粉尘爆炸特性的影响,而对高体积分数气体的影响关注较少。基于此,本文中采用改进的20 L球形粉尘爆炸装置,研究相比单相爆炸,气/粉两相体系爆炸强度特性参数的变化规律,以补充和完善气/粉两相爆炸理论及爆炸防治技术。

    实验基于改进的标准20 L球形粉尘爆炸装置开展。如图 1所示,装置主要由爆炸容器、点火系统、配气系统、测量及数据采集系统等组成。本装置已在多个研究项目中使用,其可靠性已得到验证[12-13]

    图  1  改进的标准20 L球形粉尘爆炸装置流程图
    Figure  1.  Flow of modified standard 20 L spherical apparatus

    爆炸容器为符合国际标准E1226的20 L球形容器,内部布置反弹式喷嘴、点火系统,底部安装气/粉两相阀。在20 L球形容器内使用10 kJ点火头容易出现过驱动效应,导致压力上升速率等测量结果明显偏大[14-15],且高能量点火头容易掩盖可燃气体对粉尘爆炸特性的影响[16]。因此,采用能量为0.5 kJ的化学点火头进行点火。该点火头引起的压力峰值约为8 kPa,相对较低,在很大程度上避免了点火头对混合体系爆炸压力变化规律的影响,并且该点火头在实验过程中能够实现爆炸介质的稳定点火。

    在粉尘仓开口并连接甲烷气瓶使之满足气/粉两相体系测试要求。两相体系的配制流程为:(1)将一定量粉尘(根据粉尘质量浓度计算)置于粉尘仓,并密封。(2)将甲烷注入粉尘仓。注入的量依据道尔顿分压定律并结合压力数值计算。(3)启动真空泵, 将20 L球形容器抽真空。(4)向粉尘仓充入高压空气至2 MPa,甲烷与空气在粉尘仓中实现初次预混。(5)启动两相阀,一定体积分数的甲烷/空气携带粉尘高速喷入容器内,实现甲烷、石松子粉尘、空气的均匀混合。(6)60 ms后,点火头点火点燃两相混合物。

    本实验中采用预混气体扬尘的方式配置气/粉混合物,更有利于可燃气体、粉尘、空气的均匀混合。采用高频压力传感器测量球体主压力,其量程为0~2 MPa,采集频率为5 kHz,精度等级为0.25级。

    采用分散性和流动性好的石松子粉尘和甲烷气体(纯度99.99%)作为研究对象。石松子粉尘中位直径为39 μm,其显微结构和粒径分布如图 2~3所示。选取质量浓度为50、100、150、200、250、500、750、1 000、1 250 g/m3的石松子粉和体积分数为2%、4%、6%、8%、10%、12%的甲烷进行配比,开展实验。为了保证实验数据的可靠性,每组实验至少重复3次。

    图  2  石松子粉尘扫描电镜结构图
    Figure  2.  Scanning electron microscope photo of lycopodium dust
    图  3  石松子粉尘粒径分布(D[50]=39 μm)
    Figure  3.  Particle size distribution of lycopodium dust with D[50]=39 μm

    图 4为甲烷体积分数为0%、2%、4%、6%、8%、10%和12%时,石松子粉尘爆炸压力随粉尘质量浓度的变化。由图 4可知,当粉尘质量浓度为250 g/m3时,向粉尘中添加体积分数为2%、4%、6%和8%的甲烷后,粉尘爆炸压力显著提高。这是因为低质量浓度的石松子粉尘爆炸属于贫燃料燃烧过程,其爆炸压力主要由反应物的数量控制,甲烷的加入:一方面,提高了反应物的数量;另一方面,加速粉尘分解,诱导粉尘燃烧更完全,释放出更多热量。当粉尘质量浓度升高至750~1 250 g/m3时,加入甲烷后,粉尘爆炸压力降低。这是因为高质量浓度石松子粉尘爆炸属于富燃料燃烧,其爆炸压力主要由体系中的氧气控制,甲烷的加入不仅提高了体系中的燃料含量,还降低了体系中的氧气含量,诱导体系中可燃介质的不完全燃烧,使燃烧释放出的热量减少。

    图  4  甲烷体积分数为0%、2%、4%、6%、8%、10%和12%时石松子粉尘爆炸压力
    Figure  4.  Explosion pressure of lycopodium dust at the methane mass fractions of 0%, 2%, 4%, 6%, 8%, 10% and 12%

    图 5为两相体系爆炸压力(平均值)随甲烷体积分数的变化。图中空心数据点为不同体积分数纯甲烷气体的爆炸压力,半实心圆形图标代表各甲烷体积分数对应的甲烷/石松子粉两相混合体系的最大爆炸压力,灰色区域上边界线对应的压力值为单相石松子粉尘最大爆炸压力。由图 5可知,单相石松子粉最大爆炸压力为681.2 kPa,对应的最佳爆炸质量浓度为750 g/m3。当甲烷体积分数分别为2%、4%、6%时,两相体系最大爆炸压力分别为632.4、656.4、679.6 kPa,对应的最佳爆炸质量浓度分别为750、500和250 g/m3。因此,两相体系的最大爆炸压力并未随甲烷含量的增加而显著提高。这是因为,对某一粉尘,其最大爆炸压力的定义为所有质量浓度下爆炸压力的最大值。尽管甲烷的加入能够提高低质量浓度粉尘的爆炸压力,但也会降低高质量浓度粉尘的爆炸压力,在所有质量浓度范围内,石松子粉尘最大爆炸压力受甲烷影响并不明显。当甲烷体积分数超过8%时, 如图 4(b)所示,两相体系的最大爆炸压力为单相甲烷爆炸压力,对应的最佳爆炸质量浓度为0 g/m3。此时,体系中的甲烷体积分数接近或大于当量体积分数(9.5%),该体系中的石松子粉尘更多的是作为吸热体来吸收甲烷燃烧放出的热量,因此向该体系中添加任何质量浓度的石松子都将降低体系爆炸压力。由图 5还可以发现,单相石松子及两相混合体系的最大爆炸压力均小于单相甲烷的最大爆炸压力。

    图  5  甲烷/石松子混合体系爆炸压力
    Figure  5.  Explosion pressure of hybrid mixtures of methane and lycopodium dust

    由前述可知,甲烷对石松子粉尘最佳爆炸质量浓度有显著影响。基于不同甲烷体积分数条件下的石松子粉尘最佳爆炸质量浓度,得出石松子粉尘最佳爆炸质量浓度ρo随甲烷体积分数的变化规律如图 6所示。由图 6可知,体系中加入体积分数为2%的甲烷时,石松子粉尘最佳爆炸质量浓度保持在750 g/m3,即低体积分数甲烷对石松子粉尘最佳爆炸质量浓度的影响并不明显。随着甲烷体积分数进一步提高,石松子粉尘最佳爆炸质量浓度明显降低。因此,甲烷能够显著提高粉尘的爆炸敏感性和危险性。

    图  6  甲烷/石松子混合体系的最佳爆炸质量浓度随甲烷体积分数的变化
    Figure  6.  Optimum mass concentration of methane/lycopodium mixtures varying with methane volume fraction

    图 7为石松子粉尘最大爆炸升压速率随甲烷体积分数的变化规律,图中数据均为3次实验的平均值。由图 7可以看出,当甲烷体积分数为0%时,单相石松子粉尘最大爆炸升压速率(dp/dt)max为18.81 MPa/s。石松子粉尘最大爆炸升压速率随甲烷体积分数的增大呈现升高趋势。当甲烷体积分数为6%且石松子粉尘质量浓度为250 g/m3时,甲烷/石松子体系的最大爆炸升压速率达到极值,高达28.21 MPa/s,与单相石松子粉尘相比提升了50%。当甲烷体积分数在8%~12%范围内时,体系最大爆炸升压速率均为单相甲烷对应的爆炸升压速率(101.08、126.94和71.7 MPa/s),远大于两相体系最大爆炸升压速率。即在该甲烷体积分数范围内,石松子粉尘作为吸热体存在,向甲烷中添加任何质量浓度的石松子粉尘均将诱导体系最大爆炸升压速率降低。

    图  7  石松子粉尘最大爆炸升压速率随甲烷体积分数的变化
    Figure  7.  Maximum explosion pressure rise rate of lycopodium dust at different methane volume fractions

    石松子粉尘燃烧需要经过吸热、分解、与空气混合、引燃、火焰传播等过程,甲烷的加入:一方面,能够改变石松子粉尘燃烧过程中的限速反应,进而改变粉尘燃烧的动力学特征,加快粉尘燃烧速度;另一方面,气相甲烷与体系中的氧气首先发生氧化反应并释放出热量,该热量作用于体系中石松子粉尘,加速石松子粉尘热解,进而提高粉尘燃烧速度,燃烧速度的提高导致升压速率的升高。因此,甲烷的加入导致石松子粉尘爆炸升压速率明显升高,且该升高幅度随甲烷含量的增加而增大。

    爆炸指数Kst是直接评估粉尘爆炸强度的另一个重要参数。根据NFPA68[17]和ASTM E1226[18]标准,可通过立方根定律计算出甲烷、石松子粉尘及甲烷/石松子粉混合体系爆炸指数,结果见表 1,表中数据均为平均值。由表 1可知,两相体系爆炸指数随甲烷含量的增加而增大,当甲烷体积分数φ为6%且石松子粉尘质量浓度ρ为250 g/m3时,甲烷/石松子粉两相体系爆炸指数最高,为7.66 MPa·m·s-1

    表  1  甲烷、石松子粉尘及甲烷/石松子混合体系爆燃指数
    Table  1.  Explosive deflagration indices of methane, lycopodium and methane/lycopodium mixtures
    φ/% ρ/(g·m-3) (dp/dt)max/(MPa·s-1) Kst(KG)/(MPa·m·s-1)
    0(pure dust) 750 18.81 5.11
    2 750 19.98 5.42
    4 500 21.16 5.74
    6 250 28.21 7.66
    10(pure CH4) 0 126.94 34.46
    下载: 导出CSV 
    | 显示表格

    结合前述分析可知:单相石松子粉尘和甲烷/石松子两相混合体系的最大爆炸压力、最大爆炸升压速率、爆炸指数均低于单相甲烷的;3种可爆体系爆炸强度高低顺序为:单相甲烷爆炸强度>甲烷/石松子混合体系爆炸强度>单相石松子粉尘爆炸强度。因此,工业生产过程中应尽量避免可燃粉体中混入可燃气体,以降低粉尘爆炸危险性。

    基于改进的标准20 L球形爆炸装置,系统实验研究了甲烷/石松子粉尘两相体系爆炸强度的变化规律。根据实验结果,得到以下结论:(1)甲烷的添加能够显著提高低质量浓度石松子粉尘的爆炸压力而降低高质量浓度石松子粉尘的爆炸压力,但甲烷对石松子粉尘的最大爆炸压力没有显著影响。(2)石松子粉尘的最大爆炸升压速率却随甲烷含量的增加而升高,最佳爆炸质量浓度随甲烷含量的增加而显著降低,即甲烷诱导石松子粉尘爆炸强度和敏感性增大。(3)石松子、甲烷/石松子和甲烷3种体系的爆炸强度满足如下关系:单相甲烷爆炸强度>甲烷/石松子混合体系爆炸强度>单相石松子粉尘爆炸强度。因此,工业生产过程中应尽量避免可燃粉体中混入可燃气体,以降低粉尘爆炸危险性。

  • 图  1  CJ-100实验系统[10]

    Figure  1.  Experimental system of CJ-100

    图  2  CJ-100型装置的结构示意图和照片

    Figure  2.  Schematic design and photo of CJ-100 device

    图  3  CJ-100型装置的MHD计算模型

    Figure  3.  MHD modeling of CJ-100 device

    图  4  峰值压缩磁场和回转半径随初始磁场的变化曲线

    Figure  4.  Peak magnetic field and turning radius curves with different initial magnetic fields

    图  5  不同初始磁场情况下的磁场-时间曲线

    Figure  5.  Magnetic field vs. time curves with different initial magnetic fields

    图  6  样品靶的结构示意图

    Figure  6.  Structure diagram of sample target

    图  7  不同初始参数下铜夹层靶中的加载压力峰值

    Figure  7.  Peak loading pressure of Cu layered target with different initial parameters

    图  8  铜夹层靶的位置-时间曲线和压力-时间曲线

    Figure  8.  Position vs. time curve and loading pressure vs. time curve of Cu layered target

    图  9  铁/铜夹层样品靶结构示意图

    Figure  9.  Structure diagram of Fe/Cu layered target

    图  10  样品靶自由面速度的实验曲线和计算曲线

    Figure  10.  Measured and simulated free-surface velocity curves of sample target

    图  11  在17.1 μs时样品靶中静水压力、磁压力和材料密度的空间分布

    Figure  11.  Spatial distributions of hydro pressure, magnetic pressure and density in the sample target at 17.1 μs

    图  12  铁材料的压力-比容变化曲线

    Figure  12.  Pressure vs. specific volume curve in iron at Fe/Cu interface

    图  13  铁的相图[21]和SSS-MHD程序计算的温度-压力加载路径

    Figure  13.  Phase diagram of iron [21] and temperature vs. pressure curve calculated by SSS-MHD

    图  14  铜/铁界面内侧处铁材料的静水压力-时间曲线

    Figure  14.  Hydrostatic pressure vs. time curve of iron at inner side of copper/iron interface

  • [1] ALTGILBERS L L, BROWN M D J, GRISHNAEV I, 等. 磁通量压缩发生器 [M]. 孙承纬, 周之奎, 译. 北京: 国防工业出版社, 2008: 1–5.
    [2] 谷卓伟, 罗浩, 张恒第, 等. 炸药柱面内爆磁通量压缩实验技术研究 [J]. 物理学报, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.

    GU Z W, LUO H, ZHANG H D, et al. Experimental research on the technique of magnetic flux compression by explosive cylindrical implosion [J]. Acta Physica Sinica, 2013, 62(17): 170701. DOI: 10.7498/aps.62.170701.
    [3] SAKHAROV A D, LYUDAEV R Z, SMIRNOV E N, et al. Magnetic cumulation [J]. Soviet Physics Uspekhi, 1991, 34(5): 385–386. DOI: 10.3367/UFNr.0161.199105f.0047.
    [4] BOYKO B A, BYKOV A I, DOLOTENKO M I, et al. More than 20 MG magnetic field generation in the cascade magnetocumulative MC-1 generator[M]// Megagauss Magnetic Field Generation, its Application to Science and Ultra-High Pulsed-Power Technology. Tallahassee: World Scientific Publishing, 2004: 61–66. DOI: 10.1142/9789812702517_0009.
    [5] FOWLER C M, GARN W B, CAIRD R S. Production of very high magnetic fields by implosion [J]. Journal of Applied Physics, 1960, 31(3): 588–594. DOI: 10.1063/1.1735633.
    [6] HAWKE R S, DUERRE D E, HUEBEL J G, et al. Method of isentropically compressing materials to several megabars [J]. Journal of Applied Physics, 1972, 43(6): 2734–2741. DOI: 10.1063/1.1661586.
    [7] HERLACH F, KNOEPFEL H. Megagauss fields generated in explosive - driven flux compression devices [J]. Review of Scientific Instruments, 1965, 36(8): 1088–1095. DOI: 10.1063/1.1719809.
    [8] BYKOV A I, DOLOTENKO M I, KOLOKOL’CHIKOV N P, et al. The cascade magnetocumulative generator of ultrahigh magnetic fields: a reliable tool for megagauss physics [J]. Physica B:Condensed Matter, 1996, 216(3/4): 215–217. DOI: 10.1016/0921-4526(95)00475-0.
    [9] 陈学印, 龚兴根, 陈英石, 等. 爆炸磁通量压缩装置的实验研究 [A]. 王淦昌论文选集, 1987: 151–153.
    [10] ZHOU Z Y, GU Z W, LUO H, et al. A compact explosive-driven flux compression generator for reproducibly generating multimegagauss fields [J]. IEEE Transactions on Plasma Science, 2018, 46(10): 3279–3283. DOI: 10.1109/TPS.2018.2794761.
    [11] WENG J D, TAN H, HU S L, et al. New all-fiber velocimeter [J]. Review of Scientific Instruments, 2005, 76(9): 093301. DOI: 10.1063/1.2008989.
    [12] 畅里华, 汪伟, 谷卓伟, 等. 柱面内爆磁通量压缩超高速摄影技术研究 [J]. 光学学报, 2015, 35(10): 1032001. DOI: 10.3788/AOS201535.1032001.

    CHANG L H, WANG W, GU Z W, et al. Study on magnetic flux compression by cylindrical implosion using ultrahigh-speed photography technology [J]. Acta Optica Sinica, 2015, 35(10): 1032001. DOI: 10.3788/AOS201535.1032001.
    [13] 赵继波, 孙承纬, 谷卓伟, 等. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析 [J]. 物理学报, 2015, 64(8): 080701. DOI: 10.7498/aps.64.080701.

    ZHAO J B, SUN C W, GU Z W, et al. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process [J]. Acta Physica Sinica, 2015, 64(8): 080701. DOI: 10.7498/aps.64.080701.
    [14] MADER C L. Numerical modeling of explosives and propellants [M]. 3rd ed. Boca Raton: CRC Press, 2008: 384–387.
    [15] 孙承纬. 一维冲击波和爆轰波计算程序SSS [J]. 计算物理, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.

    SUN C W. SSS: a code for computing one dimensional shock and detonation wave propagation [J]. Chinese Journal of Computational Physics, 1986, 3(2): 142–154. DOI: 10.19596/j.cnki.1001-246x.1986.02.002.
    [16] BURGESS T J. Electrical resistivity model of metals [C]// Proceedings of the 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics. Santa: Plenum Press, 1986: 307–316.
    [17] 李茂生, 陈栋泉. 高温高压下材料的本构模型 [J]. 高压物理学报, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004.

    LI M S, CHEN D Q. A constitutive model for materials under high-temperature and pressure [J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24–31. DOI: 10.11858/gywlxb.2001.01.004.
    [18] MCQUEEN R G, MARSH S P. Equation of state for nineteen metallic elements from shock-wave measurements to two megabars [J]. Journal of Applied Physics, 1960, 31(7): 1253–1269. DOI: 10.1063/1.1735815.
    [19] HIXSON R S, FRITZ J N. Shock compression of iron [M]// SCHMIDT S C, DICK R D, FORBES J W, et al. Shock Compression of Condensed Matter, 1991. Amsterdam: North-Holland, 1992: 69–70.
    [20] BARKER L M, HOLLENBACH R E. Shock wave study of the α ε phase transition in iron [J]. Journal of Applied Physics, 1974, 45(11): 4872–4887. DOI: 10.1063/1.1663148.
    [21] SANO T, MORI H, SAKATA O, et al. Femtosecond laser driven shock synthesis of the high-pressure phase of iron [J]. Applied Surface Science, 2005, 247: 571–576. DOI: 10.1016/j.apsusc.2005.01.050.
  • 期刊类型引用(0)

    其他类型引用(1)

  • 加载中
图(14)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  141
  • PDF下载量:  61
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-01-17
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-07-25

目录

/

返回文章
返回