ABAQUS混凝土损伤塑性模型中损伤因子的率相关性及实现方法

张永杰 陈力 谢普初 唐柏鉴 沈函锦

张永杰, 陈力, 谢普初, 唐柏鉴, 沈函锦. ABAQUS混凝土损伤塑性模型中损伤因子的率相关性及实现方法[J]. 爆炸与冲击, 2022, 42(10): 103103. doi: 10.11883/bzycj-2021-0464
引用本文: 张永杰, 陈力, 谢普初, 唐柏鉴, 沈函锦. ABAQUS混凝土损伤塑性模型中损伤因子的率相关性及实现方法[J]. 爆炸与冲击, 2022, 42(10): 103103. doi: 10.11883/bzycj-2021-0464
ZHANG Yongjie, CHEN Li, XIE Puchu, TANG Baijian, SHEN Hanjin. Rate correlation of the ABAQUS damage parameter in the concrete damage plasticity model and its realization method[J]. Explosion And Shock Waves, 2022, 42(10): 103103. doi: 10.11883/bzycj-2021-0464
Citation: ZHANG Yongjie, CHEN Li, XIE Puchu, TANG Baijian, SHEN Hanjin. Rate correlation of the ABAQUS damage parameter in the concrete damage plasticity model and its realization method[J]. Explosion And Shock Waves, 2022, 42(10): 103103. doi: 10.11883/bzycj-2021-0464

ABAQUS混凝土损伤塑性模型中损伤因子的率相关性及实现方法

doi: 10.11883/bzycj-2021-0464
基金项目: 国家自然科学基金(51978166);华南理工大学亚热带建筑科学国家重点实验室开放基金(2020ZA02)
详细信息
    作者简介:

    张永杰(1997- ),男,硕士研究生,youngjayyx@163.com

    通讯作者:

    陈 力(1982- ),男,博士,教授,li.chen@seu.edu.cn

  • 中图分类号: O347; TU17

Rate correlation of the ABAQUS damage parameter in the concrete damage plasticity model and its realization method

  • 摘要: ABAQUS程序中最常用的混凝土损伤塑性(concrete damage plasticity, CDP)模型无法实现损伤因子与应变率相关。为了准确描述混凝土材料在高应变率下的损伤特性,基于CDP模型定义了新的应变率场变量,编制了VUSDFLD用户子程序,开发了能够考虑损伤因子率相关性的改进的CDP(modified CDP,MCDP)模型。MCDP模型采用能量法求解混凝土拉压损伤因子,主求解程序能够随着应变率场变量的变化而自动更新不同应变率对应的损伤参数,计算得到的混凝土单轴静态加载结果与CDP模型吻合较好。MCDP模型对高应变率下动态压缩性能的模拟结果表明:混凝土材料在不同应变率下的拉压损伤对其动态力学性能有显著影响,编制的VUSDFLD子程序和MCDP模型能够有效地解决损伤应变率相关的模拟难题,可以准确地模拟爆炸荷载作用下钢筋混凝土梁的动态响应,为预测爆炸冲击等强动载作用下混凝土结构的响应和破坏提供了更可靠的技术途径。
  • 图  1  混凝土塑性损伤模型的单轴应力-应变曲线

    Figure  1.  Uniaxial stress-strain curves of CDP model

    图  2  混凝土单轴应力-应变曲线

    Figure  2.  Uniaxial stress-strain curve of concrete

    图  3  Najar线性损伤塑性模型

    Figure  3.  Najar’s linear damage plastic model

    图  4  ABAQUS二次开发流程图

    Figure  4.  Flow chart of secondary development of ABAQUS

    图  5  VUSDFLD子程序计算流程图

    Figure  5.  Flow chart of the user subroutine VUSDFLD

    图  6  有限元模型

    Figure  6.  Finite element model

    图  7  混凝土的动态应力-应变关系曲线

    Figure  7.  Concrete’s dynamic stress-strain curves

    图  8  不同应变率下的损伤因子

    Figure  8.  Damage factors under different strain rates

    图  9  两种模型得到的真实应力-真实应变曲线的对比

    Figure  9.  Comparison between true stress-true strain curves calculated by two models

    图  10  恒定应变率单轴压缩动态加载的应力-应变曲线

    Figure  10.  Stress-strain curves under uniaxial compression with constant strain rate

    图  11  工况A和B的变应变率单轴压缩动态加载应力-应变曲线

    Figure  11.  Stress-strain curves of case A and case B under uniaxial compression with varying strain rate

    图  12  工况C和D的预测动态压缩应力-应变曲线

    Figure  12.  Predicted dynamic compressive stress-strain curves of case A and case D

    图  13  混凝土梁的有限元模型

    Figure  13.  Finite element model of concrete beam

    图  14  梁爆炸荷载简化模型

    Figure  14.  Simplified blast load model of beam

    图  15  跨中位移计算结果与试验结果的对比

    Figure  15.  Comparison between simulation results and test result of mid-span displacement

    表  1  MCDP模型参数

    Table  1.   Parameters of the MCDP model

    膨胀角/
    (°)
    流动势
    偏移量
    双轴与单轴抗压
    强度之比
    不变量
    应力比
    黏性系数
    300.11.160.66670.0005
    下载: 导出CSV

    表  2  不同应变率下的C30混凝土动态强度

    Table  2.   Dynamic strengths of C30 concrete under different strain rates

    应变率/s−1抗压动态增长因子动态抗压强度/MPa抗拉动态增长因子动态抗拉强度/MPa
    10−51.02320.561.1382.29
    10−41.05521.201.1752.36
    10−31.16923.491.3072.63
    10−21.29526.021.4532.92
    10−11.43428.821.6163.25
    11.58831.931.7963.61
    101.76035.371.9974.01
    1002.77555.783.1546.34
    下载: 导出CSV

    表  3  变应变率加载工况参数

    Table  3.   Parameters for variational strain-rate cases

    工况模型时段1/ms应变率1/s−1时段2/ms应变率2/s−1时段3/ms应变率3/s−1
    AMCDP0~1.51>1.5100
    CDP0~1.51>1.5100
    BMCDP0~0.1510>0.15100
    CDP0~0.1510>0.15100
    CMCDP0~0.13100.13~0.15100>0.1510
    CDP0~0.13100.13~0.15100>0.1510
    DMCDP0~0.0051000.005~0.05510>0.055100
    CDP0~0.0051000.005~0.05510>0.055100
    下载: 导出CSV
  • [1] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002.
    [2] 方秦, 还毅, 陈力, 等. 应变速率型RC梁柱显式分析单元及其在ABAQUS软件中的实现 [J]. 工程力学, 2013, 30(5): 49–55. DOI: 10.6052/j.issn.1000-4750.2011.08.0545.

    FANG Q, HUAN Y, CHEN L, et al. The realization of explicit analytical model of rate-dependent fiber beam-column element in ABAQUS [J]. Engineering Mechanics, 2013, 30(5): 49–55. DOI: 10.6052/j.issn.1000-4750.2011.08.0545.
    [3] BISCHOFF B H, PERRY S H. Compressive behavior of concrete at high strain rate [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016.
    [4] 方秦, 还毅, 张亚栋, 等. ABAQUS混凝土损伤塑性模型的静力性能分析 [J]. 解放军理工大学(自然科学版), 2007, 8(3): 254–260. DOI: 10.7666/j.issn.1009-3443.20070311.

    FANG Q, HUAN Y, ZHANG Y D, et al. Investigation into static properties of damaged plasticity model for concrete in ABAQUS [J]. Journal of PLA University of Science and Technology, 2007, 8(3): 254–260. DOI: 10.7666/j.issn.1009-3443.20070311.
    [5] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299–326. DOI: 10.1016/0020-7683(89)90050-4.
    [6] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892–900. DOI: 10.1061/(ASCE)0733-9399(1998)124:8(892).
    [7] 杨宏明, 杨德思, 吴正昊. 基于二维凸骨料细观模型的混凝土动态力学性能分析 [J]. 混凝土, 2021(6): 88–92. DOI: 10.3969/j.issn.1002-3550.2021.06.020.

    YANG H M, YANG D S, WU Z H. Analysis of dynamic mechanical properties of concrete based on two-dimensional convex aggregate mesoscopic model [J]. Concrete, 2021(6): 88–92. DOI: 10.3969/j.issn.1002-3550.2021.06.020.
    [8] 周禹辛, 周晶. 冻融循环下混凝土的动态数值模拟分析 [J]. 水利与建筑工程学报, 2018, 16(5): 181–184, 189. DOI: 10.3969/j.issn.1672-1144.2018.05.035.

    ZHOU Y X, ZHOU J. Dynamic numerical simulation analysis of concrete under freeze-thaw cycles [J]. Journal of Water Resources and Architectural Engineering, 2018, 16(5): 181–184, 189. DOI: 10.3969/j.issn.1672-1144.2018.05.035.
    [9] 李敏, 李宏男. ABAQUS混凝土损伤塑性模型的动力性能分析 [J]. 防灾减灾工程学报, 2011(3): 299–303. DOI: 10.3969/j.issn.1672-2132.2011.03.011.

    LI M, LI H N. Investigation into dynamic properties of damaged plasticity model for concrete in ABAQUS [J]. Journal of Disaster Prevention and Mitigation Engineering, 2011(3): 299–303. DOI: 10.3969/j.issn.1672-2132.2011.03.011.
    [10] 阎石, 张亮, 王丹. 钢筋混凝土板在爆炸荷载作用下的破坏模式分析 [J]. 沈阳建筑大学学报(自然科学版), 2005, 21(3): 177–180. DOI: 10.3321/j.issn:1671-2021.2005.03.001.

    YAN S, ZHANG L, WANG D. Failure mode analysis for RC slab under explosive loads [J]. Journal of Shenyang Jianzhu University (Natural Science), 2005, 21(3): 177–180. DOI: 10.3321/j.issn:1671-2021.2005.03.001.
    [11] 秦浩, 赵宪忠. ABAQUS混凝土损伤因子取值方法研究 [J]. 结构工程师, 2013, 29(6): 27–32. DOI: 10.3969/j.issn.1005-0159.2013.06.005.

    QIN H, ZHAO X Z. Study on the ABAQUS damage parameter in the concrete damage plasticity model [J]. Structural Engineers, 2013, 29(6): 27–32. DOI: 10.3969/j.issn.1005-0159.2013.06.005.
    [12] CEB. Concrete structures under impact and impulsive loading: No. 187 [R]. Lausanne, Switzerland: Comité Euro-International du Beton, 1988.
    [13] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.
    [14] KRAJCINOVIC D, FONSEKA G U. The continuous damage theory of brittle materials, part Ⅰ: general theory [J]. Journal of Applied Mechanics, 1981, 48(4): 809–815. DOI: 10.1115/1.3157739.
    [15] ABAQUS user subroutines reference manual v6.14 [Z]. ABAQUS Inc, 2014.
    [16] 刘巍, 徐明, 陈忠范. ABAQUS混凝土损伤塑性模型参数标定及验证 [J]. 工业建筑, 2014(Suppl 1): 167–171. DOI: 13204/j.gyjz2014.sl.227.

    LIU W, XU M, CHEN Z F. Parameters calibration and verification of concrete damage plasticity model of ABAQUS [J]. Industrial Construction, 2014(Suppl 1): 167–171. DOI: 13204/j.gyjz2014.sl.227.
    [17] 杨飞, 董新勇, 周沈华, 等. ABAQUS混凝土塑性损伤因子计算方法及应用研究 [J]. 四川建筑, 2017, 37(6): 173–177. DOI: 10.3969/j.issn.1007-8983.2017.06.062.

    YANG F, DONG X Y, ZHOU S H, et al. Study on calculation method and application of the ABAQUS damage parameter in the concrete damage plasticity model [J]. Sichuan Architecture, 2017, 37(6): 173–177. DOI: 10.3969/j.issn.1007-8983.2017.06.062.
    [18] BIN R, LI C, QIN F, et al. Dynamic responses of RC beams under double-end-initiated close-in explosion [J]. Defence Technology, 2018, 14(5): 527–539. DOI: 10.1016/j.dt.2018.07.024.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  913
  • HTML全文浏览量:  272
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2022-05-17
  • 网络出版日期:  2022-05-20
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回