Rate correlation of the ABAQUS damage parameter in the concrete damage plasticity model and its realization method
-
摘要: ABAQUS程序中最常用的混凝土损伤塑性(concrete damage plasticity, CDP)模型无法实现损伤因子与应变率相关。为了准确描述混凝土材料在高应变率下的损伤特性,基于CDP模型定义了新的应变率场变量,编制了VUSDFLD用户子程序,开发了能够考虑损伤因子率相关性的改进的CDP(modified CDP,MCDP)模型。MCDP模型采用能量法求解混凝土拉压损伤因子,主求解程序能够随着应变率场变量的变化而自动更新不同应变率对应的损伤参数,计算得到的混凝土单轴静态加载结果与CDP模型吻合较好。MCDP模型对高应变率下动态压缩性能的模拟结果表明:混凝土材料在不同应变率下的拉压损伤对其动态力学性能有显著影响,编制的VUSDFLD子程序和MCDP模型能够有效地解决损伤应变率相关的模拟难题,可以准确地模拟爆炸荷载作用下钢筋混凝土梁的动态响应,为预测爆炸冲击等强动载作用下混凝土结构的响应和破坏提供了更可靠的技术途径。Abstract: The concrete damage plasticity (CDP) model, as commonly adopted in ABAQUS routine, fails to correlate damage parameters with strain rate. To accurately describe the damage of concrete under high strain rate, a modified CDP (MCDP) model considering the rate correlation of damage parameters was developed by defining a new strain rate field variable and compiling VUSDFLD subroutine. In the MCDP model, the tensile and compressive damage parameters can be obtained by the energy method, and the main solver can automatically update the damage parameters under different strain rates with the change of strain rate field variables. Under static load, the results calculated by the MCDP model are in good agreement with those by the CDP model. The MCDP model was then used to calculate the dynamic compression performance of concrete under high strain rate, indicating that the tensile and compressive damage parameters of concrete under different strain rates have a significant influence on its dynamic mechanical properties. The compiled VUSDFLD subroutine and the MCDP model can solve the problem of the correlation between damage and strain rate, investigate the dynamic response of reinforced concrete beams accurately, and provide a more reliable technical way in predicting the response and destruction of the concrete structures under severe dynamic loading such as explosion and impact.
-
Key words:
- rate-dependent effect /
- concrete /
- damage factor /
- ABAQUS routine /
- damage plasticity model
-
表 1 MCDP模型参数
Table 1. Parameters of the MCDP model
膨胀角/
(°)流动势
偏移量双轴与单轴抗压
强度之比不变量
应力比黏性系数 30 0.1 1.16 0.6667 0.0005 表 2 不同应变率下的C30混凝土动态强度
Table 2. Dynamic strengths of C30 concrete under different strain rates
应变率/s−1 抗压动态增长因子 动态抗压强度/MPa 抗拉动态增长因子 动态抗拉强度/MPa 10−5 1.023 20.56 1.138 2.29 10−4 1.055 21.20 1.175 2.36 10−3 1.169 23.49 1.307 2.63 10−2 1.295 26.02 1.453 2.92 10−1 1.434 28.82 1.616 3.25 1 1.588 31.93 1.796 3.61 10 1.760 35.37 1.997 4.01 100 2.775 55.78 3.154 6.34 表 3 变应变率加载工况参数
Table 3. Parameters for variational strain-rate cases
工况 模型 时段1/ms 应变率1/s−1 时段2/ms 应变率2/s−1 时段3/ms 应变率3/s−1 A MCDP 0~1.5 1 >1.5 100 — — CDP 0~1.5 1 >1.5 100 — — B MCDP 0~0.15 10 >0.15 100 — — CDP 0~0.15 10 >0.15 100 — — C MCDP 0~0.13 10 0.13~0.15 100 >0.15 10 CDP 0~0.13 10 0.13~0.15 100 >0.15 10 D MCDP 0~0.005 100 0.005~0.055 10 >0.055 100 CDP 0~0.005 100 0.005~0.055 10 >0.055 100 -
[1] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete [J]. International Journal of Impact Engineering, 2015, 86: 40–56. DOI: 10.1016/j.ijimpeng.2015.07.002. [2] 方秦, 还毅, 陈力, 等. 应变速率型RC梁柱显式分析单元及其在ABAQUS软件中的实现 [J]. 工程力学, 2013, 30(5): 49–55. DOI: 10.6052/j.issn.1000-4750.2011.08.0545.FANG Q, HUAN Y, CHEN L, et al. The realization of explicit analytical model of rate-dependent fiber beam-column element in ABAQUS [J]. Engineering Mechanics, 2013, 30(5): 49–55. DOI: 10.6052/j.issn.1000-4750.2011.08.0545. [3] BISCHOFF B H, PERRY S H. Compressive behavior of concrete at high strain rate [J]. Materials and Structures, 1991, 24(6): 425–450. DOI: 10.1007/BF02472016. [4] 方秦, 还毅, 张亚栋, 等. ABAQUS混凝土损伤塑性模型的静力性能分析 [J]. 解放军理工大学(自然科学版), 2007, 8(3): 254–260. DOI: 10.7666/j.issn.1009-3443.20070311.FANG Q, HUAN Y, ZHANG Y D, et al. Investigation into static properties of damaged plasticity model for concrete in ABAQUS [J]. Journal of PLA University of Science and Technology, 2007, 8(3): 254–260. DOI: 10.7666/j.issn.1009-3443.20070311. [5] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete [J]. International Journal of Solids and Structures, 1989, 25(3): 299–326. DOI: 10.1016/0020-7683(89)90050-4. [6] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892–900. DOI: 10.1061/(ASCE)0733-9399(1998)124:8(892). [7] 杨宏明, 杨德思, 吴正昊. 基于二维凸骨料细观模型的混凝土动态力学性能分析 [J]. 混凝土, 2021(6): 88–92. DOI: 10.3969/j.issn.1002-3550.2021.06.020.YANG H M, YANG D S, WU Z H. Analysis of dynamic mechanical properties of concrete based on two-dimensional convex aggregate mesoscopic model [J]. Concrete, 2021(6): 88–92. DOI: 10.3969/j.issn.1002-3550.2021.06.020. [8] 周禹辛, 周晶. 冻融循环下混凝土的动态数值模拟分析 [J]. 水利与建筑工程学报, 2018, 16(5): 181–184, 189. DOI: 10.3969/j.issn.1672-1144.2018.05.035.ZHOU Y X, ZHOU J. Dynamic numerical simulation analysis of concrete under freeze-thaw cycles [J]. Journal of Water Resources and Architectural Engineering, 2018, 16(5): 181–184, 189. DOI: 10.3969/j.issn.1672-1144.2018.05.035. [9] 李敏, 李宏男. ABAQUS混凝土损伤塑性模型的动力性能分析 [J]. 防灾减灾工程学报, 2011(3): 299–303. DOI: 10.3969/j.issn.1672-2132.2011.03.011.LI M, LI H N. Investigation into dynamic properties of damaged plasticity model for concrete in ABAQUS [J]. Journal of Disaster Prevention and Mitigation Engineering, 2011(3): 299–303. DOI: 10.3969/j.issn.1672-2132.2011.03.011. [10] 阎石, 张亮, 王丹. 钢筋混凝土板在爆炸荷载作用下的破坏模式分析 [J]. 沈阳建筑大学学报(自然科学版), 2005, 21(3): 177–180. DOI: 10.3321/j.issn:1671-2021.2005.03.001.YAN S, ZHANG L, WANG D. Failure mode analysis for RC slab under explosive loads [J]. Journal of Shenyang Jianzhu University (Natural Science), 2005, 21(3): 177–180. DOI: 10.3321/j.issn:1671-2021.2005.03.001. [11] 秦浩, 赵宪忠. ABAQUS混凝土损伤因子取值方法研究 [J]. 结构工程师, 2013, 29(6): 27–32. DOI: 10.3969/j.issn.1005-0159.2013.06.005.QIN H, ZHAO X Z. Study on the ABAQUS damage parameter in the concrete damage plasticity model [J]. Structural Engineers, 2013, 29(6): 27–32. DOI: 10.3969/j.issn.1005-0159.2013.06.005. [12] CEB. Concrete structures under impact and impulsive loading: No. 187 [R]. Lausanne, Switzerland: Comité Euro-International du Beton, 1988. [13] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2010 [S]. 北京: 中国建筑工业出版社, 2010. [14] KRAJCINOVIC D, FONSEKA G U. The continuous damage theory of brittle materials, part Ⅰ: general theory [J]. Journal of Applied Mechanics, 1981, 48(4): 809–815. DOI: 10.1115/1.3157739. [15] ABAQUS user subroutines reference manual v6.14 [Z]. ABAQUS Inc, 2014. [16] 刘巍, 徐明, 陈忠范. ABAQUS混凝土损伤塑性模型参数标定及验证 [J]. 工业建筑, 2014(Suppl 1): 167–171. DOI: 13204/j.gyjz2014.sl.227.LIU W, XU M, CHEN Z F. Parameters calibration and verification of concrete damage plasticity model of ABAQUS [J]. Industrial Construction, 2014(Suppl 1): 167–171. DOI: 13204/j.gyjz2014.sl.227. [17] 杨飞, 董新勇, 周沈华, 等. ABAQUS混凝土塑性损伤因子计算方法及应用研究 [J]. 四川建筑, 2017, 37(6): 173–177. DOI: 10.3969/j.issn.1007-8983.2017.06.062.YANG F, DONG X Y, ZHOU S H, et al. Study on calculation method and application of the ABAQUS damage parameter in the concrete damage plasticity model [J]. Sichuan Architecture, 2017, 37(6): 173–177. DOI: 10.3969/j.issn.1007-8983.2017.06.062. [18] BIN R, LI C, QIN F, et al. Dynamic responses of RC beams under double-end-initiated close-in explosion [J]. Defence Technology, 2018, 14(5): 527–539. DOI: 10.1016/j.dt.2018.07.024.