Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion
-
摘要: 综合应用同步热分析仪、改进的哈特曼爆炸测试装置及高速摄影系统,对月桂酸与硬脂酸粉尘的热解氧化特性及其在半封闭竖直管道内的火焰传播特性开展了实验研究,并分析讨论了月桂酸与硬脂酸粉尘爆炸燃烧过程中热解动力学与火焰传播特性的关系。结果表明,当粉尘云质量浓度为125 g/m3时,月桂酸粉尘云的火焰锋面结构比硬脂酸平滑,但硬脂酸粉尘的火焰传播速度明显大于月桂酸;随着质量浓度的增加,月桂酸和硬脂酸粉尘的火焰前锋逐渐变得离散,火焰传播速度逐渐增加,但速度差值逐渐减小;月桂酸粉尘的平均火焰传播速度在750 g/m3的粉尘云质量浓度下高于硬脂酸,火焰结构连续性显着降低。低质量浓度条件下月桂酸与硬脂酸粉尘云火焰传播特性差异主要由快速热解阶段的氧化放热特性决定,指前因子越大,参与热解和氧化反应的活性中心越多,氧化放热量越大,放热速率越快,火焰传播速度越快,火焰锋面结构由光滑连续向不规则离散的转变越快。随着粉尘云质量浓度的增加,火焰传播特性差异逐渐由活化能及火焰前锋预热区内氧气的质量输运过程控制,活化能越大,耗氧量越大,耗氧速率越快,越易导致火焰传播速度下降,火焰锋面趋于复杂,火焰结构连续性降低。Abstract: The pyrolysis and oxidation characteristics and flame propagation characteristics in the semi-enclosed vertical pipe of lauric acid dust and stearic acid dust were studied by using the synchrotron thermal analyzer, improved Hartmann explosive test device and high-speed photography system, the pyrolysis kinetics was analyzed by Coats-Redfern method to obtain the kinetic parameters, and the influence of pyrolysis and oxidation characteristics on the law of flame propagation during the explosion and combustion of lauric acid and stearic acid dust was analyzed and discussed. The results show that, when the dust cloud concentration is 125 g/m3, the flame front structure of lauric acid dust cloud is smoother than stearic acid dust, but the flame propagation speed of stearic acid dust is significantly greater than that of lauric acid dust; with the increase of dust cloud concentration, the flame front structure of lauric acid dust and stearic acid dust gradually becomes discrete, and the flame propagation speed gradually increases, but the speed difference gradually decreases. The average flame propagation speed of lauric acid dust is higher than that of stearic acid dust at a dust cloud concentration of 750 g/m3, and the flame structure continuity is significantly reduced. The difference in flame propagation between lauric acid dust and stearic acid dust at low concentrations is mainly determined by the oxidation exothermic characteristics of the fast pyrolysis stage. The larger the pre-exponential factor, the more active sites involved in the pyrolysis and oxidation reactions, the larger the oxidation exothermic heat, the faster the exothermic rate, the faster the flame propagation speed, and the faster the flame frontal structure transition from smooth continuous to discrete complex. And with the increase of dust cloud concentration, the flame propagation difference is gradually controlled by the activation energy and the mass transport process of oxygen in the preheating zone of the flame front. The greater the activation energy, the greater the oxygen consumption, the faster the oxygen consumption rate, the easier it will lead to the decrease of flame propagation speed, the more complex the flame front, and the decrease of flame structure continuity.
-
Key words:
- dust explosion /
- lauric acid /
- stearic acid /
- pyrolysis kinetics /
- flame propagation
-
表 1 月桂酸和硬脂酸的粉尘粒度分布特征参数
Table 1. Particle size distribution characteristic parameters of lauric acid and stearic acid dusts
材料 比表面积S/(m2·g−1) 表面积平均径D[3,2]/µm 体积平均径D[4,3]/µm 中位粒径D50/µm 月桂酸 0.42 14.29 37.55 33.97 硬脂酸 0.46 12.97 35.86 30.71 表 2 运用Coats-Redfern法求解的月桂酸和硬脂酸动力学参数[8]
Table 2. Kinetic parameters of lauric acid and stearic acid dusts by the Coats-Redfern method[8]
样品 升温速率/(℃·min−1) 快速热解阶段 慢速热解阶段 活化能/(kJ·mol−1) 指前因子/min 机理函数 活化能/(kJ·mol−1) 指前因子/min 机理函数 月桂酸 5 24.44 26726 D1 14.65 13.64 F1.5 10 26.34 44451 D1 21.53 14.14 F1.5 15 27.40 92412 D1 19.73 116.39 F1.5 平均值 26.06 54530 18.64 48.06 硬脂酸 5 26.86 29497 F1.5 29.03 433.84 D3 10 28.57 89067 F1.5 31.53 1383.00 D3 15 30.50 126670 F1.5 28.15 777.12 D3 平均值 28.64 81745 29.57 864.65 -
[1] 武卫荣, 孙涛, 路峰, 等. 粉尘爆炸的研究进展 [J]. 应用化工, 2018, 47(3): 576–579. DOI: 10.16581/j.cnki.issn1671-3206.20171221.003.WU W R, SUN T, LU F, et al. Research progress of dust explosion [J]. Applied Chemical Industry, 2018, 47(3): 576–579. DOI: 10.16581/j.cnki.issn1671-3206.20171221.003. [2] 甘波, 高伟, 张新燕, 等. 不同粒径PMMA粉尘云火焰温度特性研究 [J]. 爆炸与冲击, 2019, 39(1): 015401. DOI: 10.11883/bzycj-2017-0244.GAN B, GAO W, ZHANG X Y, et al. Flame temperatures of PMMA dust clouds with different particle size distributions [J]. Explosion and Shock Waves, 2019, 39(1): 015401. DOI: 10.11883/bzycj-2017-0244. [3] YADAV C, SAHOO R R. Energetic and exergetic investigation on lauric and stearic acid phase-change material-based thermal energy storage system integrated with engine exhaust [J]. Heat Transfer: Asian Research, 2019, 48(3): 1093–1108. DOI: 10.1002/htj.21422. [4] 余德密, 徐亦冬, 黄佳敏, 等. 微纳米颗粒/硬脂酸超疏水涂层的仿生构建及其性能研究 [J]. 功能材料, 2021, 52(9): 9017–9023. DOI: 10.3969/j.issn.1001-9731.2021.09.003.YU D M, XU Y D, HUANG J M, et al. Research on biomimetic fabrication and performance of micro-nanoparticle/stearic acid superhydrophobic coating [J]. Journal of Functional Materials, 2021, 52(9): 9017–9023. DOI: 10.3969/j.issn.1001-9731.2021.09.003. [5] 喻健良, 纪文涛, 孙会利, 等. 甲烷/石松子粉尘混合体系爆炸下限的变化规律 [J]. 爆炸与冲击, 2017, 37(6): 924–930. DOI: 10.11883/1001-1455(2017)06-0924-07.YU J L, JI W T, SUN H L, et al. Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust [J]. Explosion and Shock Waves, 2017, 37(6): 924–930. DOI: 10.11883/1001-1455(2017)06-0924-07. [6] CASTELLANOS D, CARRETO-VAZQUEZ V H, MASHUGA C V, et al. The effect of particle size polydispersity on the explosibility characteristics of aluminum dust [J]. Powder Technology, 2014, 254: 331–337. DOI: 10.1016/j.powtec.2013.11.028. [7] 肖国清, 赵梦圆, 邓洪波, 等. 硬脂酸粉尘爆炸特性试验研究 [J]. 中国安全生产科学技术, 2017, 13(2): 126–131. DOI: 10.11731/j.issn.1673-193x.2017.02.022.XIAO G Q, ZHAO M Y, DENG H B, et al. Experimental research on explosion characteristics of stearic acid dust [J]. Journal of Safety Science and Technology, 2017, 13(2): 126–131. DOI: 10.11731/j.issn.1673-193x.2017.02.022. [8] ZHANG G Y, ZHANG Y S, HUANG X W, et al. Effect of pyrolysis and oxidation characteristics on lauric acid and stearic acid dust explosion hazards [J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 104039. DOI: 10.1016/j.jlp.2019.104039. [9] CHEN J L, DOBASHI R, HIRANO T. Mechanisms of flame propagation through combustible particle clouds [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3): 225–229. DOI: 10.1016/0950-4230(96)00001-0. [10] 赵梦圆. 硬脂酸粉尘爆炸特性及抑爆技术研究 [D]. 成都: 西南石油大学, 2017. DOI: 10.27420/d.cnki.gxsyc.2017.000091. [11] JU W J, DOBASHI R, HIRANO T. Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds [J]. Journal of Loss Prevention in the Process Industries, 1998, 11(6): 423–430. DOI: 10.1016/S0950-4230(98)00027-8. [12] JU W J, DOBASHI R, HIRANO T. Dependence of flammability limits of a combustible particle cloud on particle diameter distribution [J]. Journal of Loss Prevention in the Process Industries, 1998, 11(3): 177–185. DOI: 10.1016/S0950-4230(97)00044-2. [13] DOBASHI R, SENDA K. Mechanisms of flame propagation through suspended combustible particles [J]. Journal de Physique IV (Proceedings), 2002, 12(7): 459–465. DOI: 10.1051/jp4:20020316. [14] DOBASHI R, SENDA K. Detailed analysis of flame propagation during dust explosions by UV band observations [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2/3): 149–153. DOI: 10.1016/j.jlp.2005.06.040. [15] 高伟, 圆井道也, 荣建忠, 等. 粒径分布对有机粉尘爆炸中火焰结构的影响 [J]. 燃烧科学与技术, 2013, 19(2): 157–162. DOI: 10.11715/rskxjs201302011.GAO W, MICHIYA M, RONG J Z, et al. Effects of particle size distribution on flame structure during organic dust explosion [J]. Journal of Combustion Science and Technology, 2013, 19(2): 157–162. DOI: 10.11715/rskxjs201302011. [16] GAO W, MOGI T, SUN J H, et al. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber [J]. Fuel, 2013, 113: 86–96. DOI: 10.1016/j.fuel.2013.05.071. [17] GAO W, ZHONG S J, MOGI T, et al. Study on the influence of material thermal characteristics on dust explosion parameters of three long-chain monobasic alcohols [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 186–196. DOI: 10.1016/j.jlp.2012.10.007. [18] LIU A H, CHEN J Y, HUANG X F, et al. Explosion parameters and combustion kinetics of biomass dust [J]. Bioresource Technology, 2019, 294: 122168. DOI: 10.1016/j.biortech.2019.122168. [19] LI Q Z, ZHANG G Y, ZHENG Y N, et al. Investigation on the correlations between thermal behaviors and explosion severity of aluminum dust/air mixtures [J]. Powder Technology, 2019, 355: 582–592. DOI: 10.1016/j.powtec.2019.07.090.