冻融循环冻土的冲击动态力学性能

李斌 朱志武 李涛

李斌, 朱志武, 李涛. 冻融循环冻土的冲击动态力学性能[J]. 爆炸与冲击, 2022, 42(9): 091411. doi: 10.11883/bzycj-2021-0475
引用本文: 李斌, 朱志武, 李涛. 冻融循环冻土的冲击动态力学性能[J]. 爆炸与冲击, 2022, 42(9): 091411. doi: 10.11883/bzycj-2021-0475
LI Bin, ZHU Zhiwu, LI Tao. Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles[J]. Explosion And Shock Waves, 2022, 42(9): 091411. doi: 10.11883/bzycj-2021-0475
Citation: LI Bin, ZHU Zhiwu, LI Tao. Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles[J]. Explosion And Shock Waves, 2022, 42(9): 091411. doi: 10.11883/bzycj-2021-0475

冻融循环冻土的冲击动态力学性能

doi: 10.11883/bzycj-2021-0475
基金项目: 国家自然科学基金(11972028);中央高校基本科研业务费专项资金(2682018CX44);冻土工程国家重点实验室开放基金(SKLFSE201918)
详细信息
    作者简介:

    李 斌(1997- ),男,博士研究生,1915732310@qq.com

    通讯作者:

    朱志武(1974- ),男,博士,教授,zzw4455@163.com

  • 中图分类号: O347.3

Impact dynamic mechanical properties of frozen soil with freeze-thaw cycles

  • 摘要: 以典型冻土为研究对象,通过不同冻融循环次数的冻融循环实验、不同温度的冻结实验以及不同应变率的冲击动态实验,综合研究了冻融循环冻土的冲击动态力学性能。结果表明,冻土存在冻融循环效应,随着冻融循环次数的增加,冻土的峰值应力有一定程度的降低,但在达到临界冻融循环次数后,峰值应力将维持稳定;同时,冻土表现出明显的应变率效应和温度效应,其峰值应力随应变率的增加或温度的降低而增加。通过定义冻融损伤因子,推导满足Weibull分布的冲击损伤,提出了一个基于Z-W-T方程的损伤黏弹性本构模型。该模型可较好地描述冻融循环后冻土的冲击动态力学行为,为研究季节性冻土区冻土的冲击动态破坏提供参考。
  • 图  1  圆柱土体试样

    Figure  1.  Cylindrical soil specimen

    图  2  温度时程曲线与冻融循环实验装置

    Figure  2.  Temperature time history curve and freeze-thaw cycles experimental device

    图  3  SHPB实验装置

    Figure  3.  A SHPB device

    图  4  典型波形图

    Figure  4.  Typical waveform

    图  5  不同工况下冻土的应力-应变曲线图 (T = −20 ℃)

    Figure  5.  Stress-strain curves of frozen soil for different cases (T = −20 ℃)

    图  6  不同工况下冻土的应力-应变曲线图 ($ \dot \varepsilon $= 550 s−1)

    Figure  6.  Stress-strain curves of frozen soil for different cases ($ \dot \varepsilon $= 550 s−1)

    图  7  不同工况下冻土的冻土峰值应力

    Figure  7.  Peak stress of frozen soil for different cases

    图  8  冻结过程示意图

    Figure  8.  Schematic diagram of the freezing process

    图  9  冻融损伤因子

    Figure  9.  Freeze-thaw damage factors

    图  10  Z-W-T本构模型

    Figure  10.  Z-W-T constitutive model

    图  11  相同温度不同应变率下冻土的理论曲线与实验曲线(T = −20 ℃)

    Figure  11.  Theoretical and experimental curves of frozensoil at the same temperature and different strain rates(T = −20 ℃)

    图  12  相同应变率不同温度下冻土的理论曲线与实验曲线($ \dot \varepsilon $= 550 s−1)

    Figure  12.  Theoretical and experimental curves of at the same strain rate and different temperatures ($ \dot \varepsilon $= 550 s−1)

    表  1  实验方案

    Table  1.   Experimental scheme

    冻融循环次数T/℃$ \dot \varepsilon {\text{/}}{{\text{s}}^{{\text{−1}}}} $
    0−20550,450,350
    −15550
    −10550
    1−20550,450,350
    −15550
    −10550
    3−20550,450,350
    −15550
    −10550
    5−20550,450,350
    −15550
    −10550
    下载: 导出CSV

    表  2  冻融循环冻土冲击实验结果

    Table  2.   Experimental results of frozen soil with freeze-thaw cycles under impact loading

    冻融循环次数T/℃$ \dot \varepsilon {\text{/}}{{\text{s}}^{{\text{−1}}}} $实验1实验2实验3
    $ {\sigma _{\text{p}}}{\text{/MPa}} $$ {\varepsilon _{\text{p}}}{\text{/\% }} $$ {\sigma _{\text{p}}}{\text{/MPa}} $$ {\varepsilon _{\text{p}}}{\text{/\% }} $$ {\sigma _{\text{p}}}{\text{/MPa}} $$ {\varepsilon _{\text{p}}}{\text{/\% }} $
    0−105506.744.077.164.136.964.11
    −155508.714.218.424.148.533.91
    −203508.552.348.292.548.192.45
    4509.673.369.783.2510.113.68
    55011.134.3411.064.1810.694.29
    1−105506.224.165.914.316.424.20
    −155507.753.967.553.917.824.12
    −203507.482.397.642.587.512.44
    4508.373.438.643.158.743.25
    5509.614.109.514.139.814.07
    3−105505.964.136.404.156.414.26
    −155507.414.197.954.247.114.11
    −203506.722.747.032.517.112.82
    4508.973.418.543.388.623.45
    5509.314.239.544.119.314.08
    5−105506.154.326.324.235.924.22
    −155507.424.287.124.187.714.13
    −203507.112.287.022.217.212.34
    4508.543.088.613.038.542.94
    5509.624.139.364.119.513.92
    下载: 导出CSV

    表  3  本构模型参数 ($T=-20\;^{\circ}{\rm C} $)

    Table  3.   Constitutive model parameters ($T=-20\;^{\circ}{\rm C} $)

    冻融循环次数$ \dot \varepsilon {\text{/}}{{\text{s}}^{{\text{−1}}}} $$ {E_{\text{0}}}{\text{/GPa}} $$ {E_2}{\text{/GPa}} $$ {\theta _2}{{/\mu {\rm{s}}}} $$ {\varepsilon _{\text{f}}} $$ m $$ f $
    05501.63611.230.7050.01311.161.000
    4501.6677.360.9710.01161.231.000
    3501.6064.192.8630.00881.231.000
    15501.6559.160.6710.01291.330.871
    4501.5608.630.9190.01141.320.871
    3501.6244.452.7210.00861.330.871
    35501.73210.230.5130.01391.130.847
    4501.63013.210.5410.01221.210.847
    3501.65213.520.7790.00911.110.847
    55501.64814.510.5420.01371.140.852
    4501.62511.010.4670.01191.070.852
    3501.62614.060.4670.00911.170.852
    下载: 导出CSV

    表  4  本构模型参数 ($ \dot \varepsilon = 550\;{\rm s}^{-1}$)

    Table  4.   Constitutive model parameters ($ \dot \varepsilon=550\;{\rm s}^{-1} $)

    冻融循环次数T/℃$ {E_{\text{0}}}{\text{/GPa}} $$ {E_2}{\text{/GPa}} $$ {\theta _2}{{/\mu {\rm{s}}}} $$ {\varepsilon _{\text{f}}} $$ m $$ f $
    0−201.63611.230.7050.01311.161.000
    −151.5227.250.5770.01341.031.000
    −101.34013.220.1270.01311.021.000
    1−201.6559.160.6710.01291.340.871
    −151.53116.120.2090.01291.120.888
    −101.3359.010.1510.01311.050.939
    3−201.73210.230.5120.01391.130.847
    −151.54110.390.2570.01341.140.881
    −101.3814.070.3970.01341.020.893
    5−201.64814.500.5420.01371.140.852
    −151.4558.860.6230.01341.010.875
    −101.15310.830.4110.01311.060.878
    下载: 导出CSV
  • [1] FRENCH H M. The periglacial environment [M]. 4th ed. Hoboken: John Wiley & Sons, 2017.
    [2] RAN Y H, LI X, CHENG G D, et al. Distribution of permafrost in China: an overview of existing permafrost maps [J]. Permafrost and Periglacial Processes, 2012, 23(4): 322–333. DOI: 10.1002/ppp.1756.
    [3] 马巍, 徐学祖, 张立新. 冻融循环对石灰粉土剪切强度特性的影响 [J]. 岩土工程学报, 1999, 21(2): 158–160. DOI: 10.3321/j.issn:1000-4548.1999.02.005.

    MA W, XU X Z, ZHANG L X. Influence of frost and thaw cycles on shear strength of lime silt [J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 158–160. DOI: 10.3321/j.issn:1000-4548.1999.02.005.
    [4] LEE W, BOHRA N C, ALTSCHAEFFL A G, et al. Resilient modulus of cohesive soils and the effect of freeze-thaw [J]. Canadian Geotechnical Journal, 1995, 32(4): 559–568. DOI: 10.1139/t95-059.
    [5] 王大雁, 马巍, 常小晓, 等. 冻融循环作用对青藏粘土物理力学性质的影响 [J]. 岩石力学与工程学报, 2005, 24(23): 4313–4319. DOI: 10.3321/j.issn:1000-6915.2005.23.018.

    WANG D Y, MA W, CHANG X X, et al. Physico-mechanical properties changes of Qinghai-Tibet clay due to cyclic freezing and thawing [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4313–4319. DOI: 10.3321/j.issn:1000-6915.2005.23.018.
    [6] HOTINEANU A, BOUASKER M, ALDAOOD A, et al. Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays [J]. Cold Regions Science and Technology, 2015, 119: 151–157. DOI: 10.1016/j.coldregions.2015.08.008.
    [7] 苏谦, 唐第甲, 刘深. 青藏斜坡黏土冻融循环物理力学性质试验 [J]. 岩石力学与工程学报, 2008, 27(S1): 2990–2994.

    SU Q, TANG D J, LIU S. Test on physico-mechanical properties of Qinghai-Tibet slope clay under freezing-thawing cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 2990–2994.
    [8] 穆彦虎, 陈涛, 陈国良, 等. 冻融循环对黏质粗粒土抗剪强度影响的试验研究 [J]. 防灾减灾工程学报, 2019, 39(3): 375–386. DOI: 10.13409/j.cnki.jdpme.2019.03.002.

    MU Y H, CHEN T, CHEN G L, et al. Experimental study on effect of cyclic freeze-thaw on shear behaviors of clayey coarse-grained soil [J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(3): 375–386. DOI: 10.13409/j.cnki.jdpme.2019.03.002.
    [9] 齐吉琳, 程国栋, VERMEER P A. 冻融作用对土工程性质影响的研究现状 [J]. 地球科学进展, 2005, 20(8): 887–894. DOI: 10.3321/j.issn:1001-8166.2005.08.010.

    QI J L, CHENG G D, VERMEER P A. State-of-the-art of influence of freeze-thaw on engineering properties of soils [J]. Advances in Earth Science, 2005, 20(8): 887–894. DOI: 10.3321/j.issn:1001-8166.2005.08.010.
    [10] ZHOU Z W, MA W, ZHANG S J, et al. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess [J]. Cold Regions Science and Technology, 2018, 146: 9–18. DOI: 10.1016/j.coldregions.2017.11.011.
    [11] XU X T, ZHANG W D, FAN C X, et al. Effect of freeze-thaw cycles on the accumulative deformation of frozen clay under cyclic loading conditions: experimental evidence and theoretical model [J]. Road Materials and Pavement Design, 2021, 22(4): 925–941. DOI: 10.1080/14680629.2019.1696221.
    [12] FAN C X, ZHANG W D, LAI Y, et al. Mechanical behaviors of frozen clay under dynamic cyclic loadings with freeze-thaw cycles [J]. Cold Regions Science and Technology, 2021, 181: 103184. DOI: 10.1016/j.coldregions.2020.103184.
    [13] LEE M Y, FOSSUM A F, COSTIN L S, et al. Frozen soil material testing and constitutive modeling [R]. Albuquerque: Sandia National Laboratory, 2002. DOI: 10.2172/793403.
    [14] ZHANG F L, ZHU Z W, FU T T, et al. Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading [J]. Mechanics of Materials, 2020, 140: 103217. DOI: 10.1016/j.mechmat.2019.103217.
    [15] MA D D, XIANG H S, MA Q Y, et al. Dynamic damage constitutive model of frozen silty soil with prefabricated crack under uniaxial load [J]. Journal of Engineering Mechanics, 2021, 147(6): 04021033. DOI: 10.1061/(Asce)Em.1943-7889.0001933.
    [16] SHANGGUAN Z H, ZHU Z W, TANG W R. Dynamic impact experiment and numerical simulation of frozen soil with prefabricated holes [J]. Journal of Engineering Mechanics, 2020, 146(8): 04020085. DOI: 10.1061/(Asce)Em.1943-7889.0001821.
    [17] TANG W R, ZHU Z W, FU T T, et al. Dynamic experiment and numerical simulation of frozen soil under confining pressure [J]. Acta Mechanica Sinica, 2020, 36(6): 1302–1318. DOI: 10.1007/s10409-020-00999-4.
    [18] WANG D Y, MA W, NIU Y H, et al. Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay [J]. Cold Regions Science and Technology, 2007, 48(1): 34–43. DOI: 10.1016/j.coldregions.2006.09.008.
    [19] XU J, LI Y F, LAN W, et al. Shear strength and damage mechanism of saline intact loess after freeze-thaw cycling [J]. Cold Regions Science and Technology, 2019, 164: 102779. DOI: 10.1016/j.coldregions.2019.05.005.
    [20] JI Y K, ZHOU G Q, HALL M R. Frost heave and frost heaving-induced pressure under various restraints and thermal gradients during the coupled thermal-hydro processes in freezing soil [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(5): 3671–3683. DOI: 10.1007/s10064-018-1345-z.
    [21] XIA K W, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system–a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27–59. DOI: 10.1016/j.jrmge.2014.07.008.
    [22] ZHANG F L, ZHU Z W, MA W, et al. A unified viscoplastic model and strain rate-temperature equivalence of frozen soil under impact loading [J]. Journal of the Mechanics and Physics of Solids, 2021, 152: 104413. DOI: 10.1016/j.jmps.2021.104413.
    [23] LEE S, KIM K M, PARK J, et al. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2018, 113: 191–202. DOI: 10.1016/j.ijimpeng.2017.11.015.
    [24] 董凯, 任辉启, 阮文俊, 等. 珊瑚砂应变率效应研究 [J]. 爆炸与冲击, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.

    DONG K, REN H Q, RUAN W J, et al. Study on strain rate effect of coral sand [J]. Explosion and Shock Waves, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.
    [25] 巫绪涛, 胡时胜, 陈德兴, 等. 钢纤维高强混凝土冲击压缩的试验研究 [J]. 爆炸与冲击, 2005, 25(2): 125–131. DOI: 10.11883/1001-1455(2005)02-0125-07.

    WU X T, HU S S, CHEN D X, et al. Impact compression experiment of steel fiber reinforced high strength concrete [J]. Explosion and Shock Waves, 2005, 25(2): 125–131. DOI: 10.11883/1001-1455(2005)02-0125-07.
    [26] ZHU Z W, KANG G Z, MA Y, et al. Temperature damage and constitutive model of frozen soil under dynamic loading [J]. Mechanics of Materials, 2016, 102: 108–116. DOI: 10.1016/j.mechmat.2016.08.009.
    [27] 陈柏生, 胡时胜, 马芹永, 等. 冻土动态力学性能的实验研究 [J]. 力学学报, 2005, 37(6): 724–728. DOI: 10.6052/0459-1879-2005-6-2004-450.

    CHEN B S, HU S S, MA Q Y, et al. Experimental research of dynamic mechanical behaviors of frozen soil [J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 724–728. DOI: 10.6052/0459-1879-2005-6-2004-450.
    [28] LI B, ZHU Z W, NING J G, et al. Viscoelastic-plastic constitutive model with damage of frozen soil under impact loading and freeze-thaw loading [J]. International Journal of Mechanical Sciences, 2022, 214: 106890. DOI: 10.1016/j.ijmecsci.2021.106890.
    [29] 姜亚成, 周磊, 朱哲明, 等. 冻融循环对含纯Ⅰ型裂隙围岩的动态起裂特性影响规律 [J]. 爆炸与冲击, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.

    JIANG Y C, ZHOU L, ZHU Z M, et al. Effects of freeze-thaw cycles on dynamic fracture initiation characteristics of surrounding rock with pure Ⅰ type fracture under impact loads [J]. Explosion and Shock Waves, 2021, 41(4): 043104. DOI: 10.11883/bzycj-2020-0330.
    [30] JIN S S, ZHENG G P, YU J. A micro freeze-thaw damage model of concrete with fractal dimension [J]. Construction and Building Materials, 2020, 257: 119434. DOI: 10.1016/j.conbuildmat.2020.119434.
    [31] ZHANG Z Y, LIU Q, WU Q, et al. Damage evolution of asphalt mixture under freeze-thaw cyclic loading from a mechanical perspective [J]. International Journal of Fatigue, 2021, 142: 105923. DOI: 10.1016/j.ijfatigue.2020.105923.
    [32] ZENG W, DING Y N, ZHANG Y L, et al. Effect of steel fiber on the crack permeability evolution and crack surface topography of concrete subjected to freeze-thaw damage [J]. Cement and Concrete Research, 2020, 138: 106230. DOI: 10.1016/j.cemconres.2020.106230.
    [33] GONG F Y, JACOBSEN S. Modeling of water transport in highly saturated concrete with wet surface during freeze/thaw [J]. Cement and Concrete Research, 2019, 115: 294–307. DOI: 10.1016/j.cemconres.2018.08.013.
    [34] SUN M, ZOU C Y, XIN D B. Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis [J]. Cement and Concrete Composites, 2020, 114: 103731. DOI: 10.1016/j.cemconcomp.2020.103731.
    [35] LÖVQVIST L, BALIEU R, KRINGOS N. A thermodynamics-based model for freeze-thaw damage in asphalt mixtures [J]. International Journal of Solids and Structures, 2020, 203: 264–275. DOI: 10.1016/j.ijsolstr.2020.07.021.
    [36] 徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究 [J]. 岩石力学与工程学报, 2005, 24(17): 3076–3082. DOI: 10.3321/j.issn:1000-6915.2005.17.012.

    XU G M, LIU Q S. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3076–3082. DOI: 10.3321/j.issn:1000-6915.2005.17.012.
    [37] FU T T, ZHU Z W, CAO C X. Constitutive model of frozen-soil dynamic characteristics under impact loading [J]. Acta Mechanica, 2019, 230(5): 1869–1889. DOI: 10.1007/s00707-019-2369-6.
    [38] CHOI K S, PAN J. A generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials [J]. International Journal of Plasticity, 2009, 25(7): 1325–1358. DOI: 10.1016/j.ijplas.2008.09.005.
    [39] WANG L L. Stress wave propagation for nonlinear viscoelastic polymeric materials at high strain rates [J]. Chinese Journal of Mechanics-Series A, 2003, 19(1): 177–183. DOI: 10.1017/s1727719100004184.
    [40] ZHU Z W, FU T T, ZHOU Z W, et al. Research on Ottosen constitutive model of frozen soil under impact load [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 137: 104544. DOI: 10.1016/j.ijrmms.2020.104544.
    [41] 王礼立. 爆炸/冲击动力学学习研究中的若干疑惑 [J]. 爆炸与冲击, 2021, 41(1): 011401. DOI: 10.11883/bzycj-2020-0415.

    WANG L L. Some doubts in studying explosion/impact dynamics [J]. Explosion and Shock Waves, 2021, 41(1): 011401. DOI: 10.11883/bzycj-2020-0415.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  738
  • HTML全文浏览量:  418
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2022-04-25
  • 网络出版日期:  2022-05-18
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回