Effect of initial parameter setting of water on load characteristics of underwater explosion
-
摘要: 针对数值计算中水介质初始参数设置对水下爆炸载荷特性的影响开展了深入分析。基于参考状态参数确定了水介质状态方程形式;从热力学角度分析了常用的两种初始参数设置方式,提出了一种按等温假设设置初始参数的方式,并对LS-DYNA中INITIAL_EOS_ALE关键字给出的参数设置结果进行了分析;采用LS-DYNA程序进行一维球形装药水下爆炸数值计算,分析了3种设置方式下爆炸载荷特性的差异,并与已有研究成果进行了对比。结果表明:当仅改变水介质内能项时,参数按等容过程变化,流场压力源于外界传热,与实际深水环境严重不符;INITIAL_EOS_ALE关键字给出的参数设置结果与仅改变水介质密度(等内能过程)接近,水温变化规律与真实环境不符;按等内能过程和等温过程设置初始参数时,水下爆炸载荷特性计算结果基本相同,与已有成果吻合;综合分析认为,按等温形式进行初始参数设置方式较优。研究成果可为水下爆炸尤其是深水爆炸数值仿真提供参考。Abstract: The effect of the initial parameter setting of water medium on underwater explosion load characteristics in numerical simulation is studied. Firstly, based on the parameters under reference state, a kind of polynomial equation of state (EOS) is chosen as the EOS of water medium. Secondly, from the perspective of thermodynamics, two existing setting modes of initial parameters are analyzed, and a new setting mode following isothermal process is proposed. In addition, the results of initial compression ratio, initial internal energy and acoustic velocity of water under different depths given by INITIAL_EOS_ALE keyword in LS-DYNA program are investigated and compared with other three modes. Finally, by using the LS-DYNA program, numerical simulations of underwater explosion under different depths are conducted with a one-dimensional spherical charge model. The differences of shock wave load and bubble pulsation characteristics among the first three setting modes are discussed, which are also compared with previous studies. The results show that the parameters of water medium change with depths according to isochoric process if only the internal energy term of water medium is changed. Hence, it indicates that the pressures under different water depths are caused by thermal conduction from external environment, which is seriously inconsistent with the actual deep water condition. Initial parameters given by INITIAL_EOS_ALE keyword are close to the results obtained by only changing the density of water (i.e., following isometric energy process), but the changing laws of temperature for these two modes are both inconsistent with the real environment. When the parameters follow equal internal energy process or isothermal process, the calculated load characteristics are close to each other, which are consistent with existed studies. It is concluded, therefore, that initial parameter setting mode based on isothermal process is better than other three modes. This conclusion can provide an important reference to ensure the accuracy of underwater explosion numerical simulation, especially for deep water explosion.
-
Key words:
- underwater explosion /
- initial compression ratio /
- initial internal energy /
- shock wave /
- bubble
-
表 1 水介质状态方程参数
Table 1. EOS parameters of water
C0/Pa C1/GPa C2/GPa C3/GPa C4 C5 C6 101325 2.2 9.54 14.57 0.28 0.28 0 表 2
$H=5\;{\rm {km}} $ 及$R=55R_0 $ 时3种方式下的$t_{\rm a} $ 、$\Delta P_{\rm m} $ 及$t_{\rm c} $ Table 2. Values of
$t_{\rm a} $ ,$\Delta P_{\rm m} $ and$t_{\rm c} $ in three modes when$H=5\;{\rm {km}} $ and$R=55R_0 $ 方式 ta/ms ΔPm/MPa tc/ms Ⅰ 1.7745 12.080 0.2676 Ⅱ 1.6578 13.603 0.2587 Ⅲ 1.6518 13.692 0.2581 表 3 冲击波载荷在5 km水深处相对于0 m的变化幅度
Table 3. Changing amplitudes of shock wave load when depth changes from 0 m to 5 km
方式 变化幅度/% ΔPm I es Ⅰ −1.202 −74.304 −32.896 Ⅱ 11.255 −73.227 −21.877 Ⅲ 11.981 −73.171 −21.247 表 4
$H=5\;{\rm{km}} $ 时3种方式下对应的$R_{\max} $ 和$T $ Table 4. Values of
$R_{\max} $ and$T $ in three modes when$H=5\;{\rm{km}} $ 方式 Rmax/mm T/ms Ⅰ 178.722 1.7129 Ⅱ 180.618 1.7445 Ⅲ 180.731 1.7460 -
[1] 杨坤, 陈朗, 伍俊英, 等. 计算网格与人工粘性系数对炸药水中爆炸数值模拟计算的影响分析 [J]. 兵工学报, 2014, 35(S2): 237–243.YANG K, CHEN L, WU J Y, et al. The effects of computing grid and artificial viscosity coefficient on underwater explosion numerical simulation [J]. Acta Armamentarii, 2014, 35(S2): 237–243. [2] WANG G H, WANG Y X, LU W B, et al. On the determination of the mesh size for numerical simulations of shock wave propagation in near field underwater explosion [J]. Applied Ocean Research, 2016, 59: 1–9. DOI: 10.1016/j.apor.2016.05.011. [3] 胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究 [J]. 高压物理学报, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.20190773.HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102. DOI: 10.11858/gywlxb.20190773. [4] CHISUM J E, SHIN Y S. Explosion gas bubbles near simple boundaries [J]. Shock and Vibration, 1997, 4(1): 11–25. DOI: 10.3233/SAV-1997-4102. [5] 詹发民, 姜涛, 任佳宁, 等. 深水爆炸载荷数值仿真研究 [J]. 工程爆破, 2013, 19(6): 9–12. DOI: 10.3969/j.issn.1006-7051.2013.06.003.ZHAN F M, JIANG T, REN J N, et al. Numerical simulation of explosion load in deep-water [J]. Engineering Blasting, 2013, 19(6): 9–12. DOI: 10.3969/j.issn.1006-7051.2013.06.003. [6] 张亮. 典型装药深水爆炸特性研究 [D]. 北京: 北京理工大学, 2020: 56–57. [7] BRETT J M. Numerical modelling of shock wave and pressure pulse generation by underwater explosions: AD010558 [R]. Australia: Aeronautical and Maritime Research Laboratory, 1998. [8] SHIN Y S, LEE M, LAM K Y, et al. Modeling mitigation effects of watershield on shock waves [J]. Shock and Vibration, 1998, 5(4): 225–234. DOI: 10.1155/1998/782032. [9] 鲁忠宝, 南长江, 步相东, 等. 不同水深爆炸气泡运动特性仿真 [J]. 鱼雷技术, 2009, 17(5): 15–18. DOI: 10.3969/j.issn.1673-1948.2009.05.004.LU Z B, NAN C J, BU X D, et al. Simulation of moving features of underwater explosion bubble in different water depths [J]. Torpedo Technology, 2009, 17(5): 15–18. DOI: 10.3969/j.issn.1673-1948.2009.05.004. [10] 董琪, 韦灼彬, 唐廷, 等. 爆炸深度对浅水爆炸气泡脉动的影响 [J]. 高压物理学报, 2018, 32(2): 201420. DOI: 10.11858/gywlxb.20170580.DONG Q, WEI Z B, TANG T, et al. Influence of explosion depth on bubble pulsation in shallow water explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 201420. DOI: 10.11858/gywlxb.20170580. [11] LSTC. LS-DYNA keyword user’s manual Volume 1 [M]. LSTC, 2019: 2259-2260. [12] 李晓杰, 张程娇, 王小红, 等. 水的状态方程对水下爆炸影响的研究 [J]. 工程力学, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180.LI X J, ZHANG C J, WANG X H, et al. Numerical study on the effect of equations of state of water on underwater explosions [J]. Engineering Mechanics, 2014, 31(8): 46–52. DOI: 10.6052/j.issn.1000-4750.2013.03.0180. [13] PONSONNAILLE J P, EDJTEMAI N. Numerical simulation and analysis of fluid surge due to the rupture of a storage tank [C]//First European LS-DYNA Conference. England, 1997:1–5. [14] ОРЛЕНКО Л П. 爆炸物理学(下册) [M]. 孙承纬, 译. 北京: 科学出版社, 2011: 1311–1312.ОРЛЕНКО Л П. Explosion physics[M]. SUN C W, translate. Beijing: Science Press, 2011: 1311–1312. [15] 霍文娟, 韩震. 印度洋北部海域垂直剖面温度结构的参数模型 [J]. 海洋环境科学, 2013, 32(3): 368–372,380.HUO W J, HAN Z. Parametric model of seawater temperature profile in the Northern Indian Ocean [J]. Marine Environmental Science, 2013, 32(3): 368–372,380. [16] 王竹溪. 热力学 [M]. 北京: 北京大学出版社, 2011: 274–276. [17] LEE E L, HORNIG H C, KURY J W, et al. Adiabatic expansion of high explosive detonation products: UCRL-50422 [R]. Livermore, California, USA: Lawrence Radiation Laboratory, 1968. [18] BAUM F A, SANASARYAN N S. Effect of hydrostatic pressure on the parameters of an underwater explosion [J]. Combustion, Explosion and Shock Waves, 1965, 1(4): 33–38. DOI: 10.1007/BF00748810. [19] VANZANT B W, DEHART R C. Effect of hydrostatic pressure on shock waves from underwater explosions [J]. Journal of Applied Physics, 1965, 36(10): 3116–3117. DOI: 10.1063/1.1702934. [20] 钟帅. 模拟深水爆炸装药输出能量的研究 [D]. 安徽淮南: 安徽理工大学, 2007: 44–45.ZHONG S. Study on energy output of explosive charge under simulated deep-water explosion[D]. Huainan, Anhui: Anhui University of Science and Technology, 2007: 44–45. [21] SLIFKO J F. Pressure-pulse characteristics of deep explosions as functions of depth and range: AD661804 [R]. Maryland: U. S. Naval Ordnance Lab, 1967. [22] XIAO P, YANG K D. Experimental results for peak pressure and sound exposure level in deep-sea explosions [J]. Acoustics Australia, 2015, 43(2): 175–178. DOI: 10.1007/s40857-015-0020-9. [23] COLE R H. Underwater explosion [M]. Princeton, USA: Princeton University Press, 1948: 270–276. [24] SWIFT E, DECIUS J C. Measurement of bubble pulse phenomena Ⅲ: Radius and period studies in underwater explosion research [R]. Washington D C: Office of Naval Research, 1950. [25] LIANG H Z, ZHANG Q M, LONG R R, et al. Pulsation behavior of a bubble generated by a deep underwater explosion [J]. AIP Advances, 2019, 9(2): 025108. DOI: 10.1063/1.5086361.