长持时爆炸冲击波荷载作用下梁板组合结构的动力响应

李圣童 汪维 梁仕发 桑琴扬 郑荣跃

李圣童, 汪维, 梁仕发, 桑琴扬, 郑荣跃. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应[J]. 爆炸与冲击, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495
引用本文: 李圣童, 汪维, 梁仕发, 桑琴扬, 郑荣跃. 长持时爆炸冲击波荷载作用下梁板组合结构的动力响应[J]. 爆炸与冲击, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495
LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495
Citation: LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495

长持时爆炸冲击波荷载作用下梁板组合结构的动力响应

doi: 10.11883/bzycj-2021-0495
基金项目: 国家自然科学基金(11302261,11972201)
详细信息
    作者简介:

    李圣童(1996- ),女,硕士研究生, lst9606@outlook.com

    通讯作者:

    汪 维(1983- ),男,博士,副教授,wangwei7@nbu.edu.cn

  • 中图分类号: O383

Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load

  • 摘要: 为研究钢筋混凝土梁板组合结构在长持时远爆冲击波荷载作用下的动力响应及毁伤形态,通过实验获得了梁板组合结构的破坏形态和背爆面中心点位移变化。利用有限元软件对钢筋混凝土梁板组合结构的动态响应过程进行数值模拟研究,模拟得到的结构破坏现象与实验吻合较好。在此基础上,分析了梁板组合结构在相同冲量、不同峰值爆炸荷载作用下组合结构的动态响应和破坏过程,并结合挠跨比与破坏形态划分破坏模式。研究结果表明,相同冲量作用下,随着爆炸荷载峰值强度增加,梁板组合构件的破坏程度逐渐增加,破坏模式从弯曲破坏向弯剪联合破坏转换,最后呈现冲切破坏模式;组合构件中板部分发生破坏的时间早于交叉梁部分、破坏程度大于交叉梁。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental device

    图  2  构件安装

    Figure  2.  Widget installation

    图  3  梁板组合构件尺寸及配筋示意图

    Figure  3.  Dimensions and reinforcement of a beam-slab composite structure

    图  4  边框上冲击波超压测试波形

    Figure  4.  Shock wave overpressure waveforms measured on the frame

    图  5  组合结构背爆面中心点位移时程曲线

    Figure  5.  Displacement-time curve at the center point of the backside of the beam-slab composite structure

    图  6  实验后裂纹

    Figure  6.  Cracks after experiment

    图  7  数值计算模型

    Figure  7.  Numerical calculation models

    图  8  简化加载曲线

    Figure  8.  Simplified loading curves

    图  9  背爆面中心点位移时程曲线

    Figure  9.  Displacement-time curves at the center point of the backside

    图  10  实验和数值模拟得到的裂缝

    Figure  10.  Experimental and simulated cracks

    图  11  简化爆炸冲击波载荷下结构的破坏过程

    Figure  11.  Failure process of the structure under simplified explosion shock wave loading

    图  12  简化三角形加载曲线

    Figure  12.  Simplified triangle load curves

    图  13  不同工况下构件背爆面、迎爆面以及半剖面的破坏

    Figure  13.  Failure in the backsides, frontsides and half sections of the structures under different load conditions

    图  14  不同工况下背爆面中心点的位移峰值

    Figure  14.  Displacement peaks of the central point of the backside under different load conditions

    图  15  不同工况下背爆面中心点的位移时程曲线

    Figure  15.  Displacement-time curves of the central point of the backside under different load conditions

    表  1  混凝土材料模型参数[25-26]

    Table  1.   Parameters of the concrete material model[25-26]

    混凝土型号$ \rho $c/(kg·m−3)Ec/GPaµθefb0/fc0Kη
    C352 39031.50.2380.11.160.666 670.000 01
    下载: 导出CSV

    表  2  钢筋材料模型参数[27]

    Table  2.   Parameters of the steel material model[27]

    钢筋型号$ \rho $s/(kg·m−3)Es/GPa$ {\sigma }_{\mathrm{s}\mathrm{y}} $/MPads/mmµs
    HRB3357 853.2221.433580.3
    HPB3007 853.2224.630060.3
    HPB3007 853.2221.430080.3
    下载: 导出CSV

    表  3  相同冲量作用下梁板组合构件的破坏等级划分

    Table  3.   Failure grade classification of beam-slab composite structures under the same impulse

    构件方法加载峰值/kPa爆炸持续时间/ms背爆面中心点最大位移/mm挠跨比/%破坏等级
    1实验202.410005.900.30轻度破坏
    2模拟202.410005.850.29轻度破坏
    3100.010003.140.16轻度破坏
    4111.19003.690.18轻度破坏
    5125.08004.510.23轻度破坏
    6142.97005.800.29轻度破坏
    7166.76006.700.34轻度破坏
    8200.050013.620.68中度破坏
    9204.149014.750.74中度破坏
    10208.348016.090.80中度破坏
    11217.446021.181.05重度破坏
    12222.2450310.0115.50完全破坏
    下载: 导出CSV
  • [1] 董毓利, 谢和平, 赵鹏. 不同应变率下混凝土受压全过程的实验研究及其本构模型 [J]. 水利学报, 1997(7): 72–77. DOI: 10.3321/j.issn:0559-9350.1997.07.013.

    DONG Y L, XIE H P, ZHAO P, et al. Experimental study and constitutive model on concrete under compression with different strain rate [J]. Journal of Hydraulic Engineering, 1997(7): 72–77. DOI: 10.3321/j.issn:0559-9350.1997.07.013.
    [2] 孙文彬, 王冰, WU C. 爆炸荷载下混凝土梁中混凝土和钢筋应变率研究 [J]. 混凝土, 2008(12): 35–37. DOI: 10.3969/j.issn.1002-3550.2008.12.011.

    SUN W B, WANG B, WU C. Study on the strain rates of concrete and steel in concrete beams under blast loadings [J]. Concrete, 2008(12): 35–37. DOI: 10.3969/j.issn.1002-3550.2008.12.011.
    [3] MALVAR L J. Review of static and dynamic properties of steel reinforcing bars [J]. Materials Journal, 1998, 95(5): 609–616.
    [4] 阎石, 张亮, 王丹. 钢筋混凝土板在爆炸荷载作用下的破坏模式分析 [J]. 沈阳建筑大学学报(自然科学版), 2005, 21(3): 177–180. DOI: 10.3969/j.issn.2095-1922.2005.03.001.

    YAN S, ZHANG L, WANG D. Failure mode analysis for RC slab under explosive loads [J]. Journal of Shenyang Jianzhu University (Natural Science), 2005, 21(3): 177–180. DOI: 10.3969/j.issn.2095-1922.2005.03.001.
    [5] 史祥生. 爆炸荷载作用下钢筋混凝土板的损伤破坏分析 [D]. 天津: 天津大学, 2008: 16−27. DOI: 10.7666/d.y1530778.

    SHI X S. Damage assessment of RC slabs subjected to blast load [D]. Tianjin, China: Tianjin University, 2008: 16-27. DOI: 10.7666/d.y1530778.
    [6] 贾敬尧. 近距爆炸荷载作用下钢筋混凝土板的动力响应及损伤评估 [D]. 西安: 西安建筑科技大学, 2019: 49-59. DOI: 10.27393/d.cnki.gxazu.2019.000263.

    JIA J Y. Dynamic response and damage assessment of reinforced concrete slabs under close-in blast loading [D]. Xi’an, Shaanxi, China: Xi’an University of Architecture and Technology, 2019: 49−59. DOI: 10.27393/d.cnki.gxazu.2019.000263.
    [7] 李忠献, 师燕超, 史祥生. 爆炸荷载作用下钢筋混凝土板破坏评定方法 [J]. 建筑结构学报, 2009, 30(6): 60–66. DOI: 10.14006/j.jzjgxb.2009.06.008.

    LI Z X, SHI Y C, SHI X S. Damage analysis and assessment of RC slabs under blast load [J]. Journal of Building Structures, 2009, 30(6): 60–66. DOI: 10.14006/j.jzjgxb.2009.06.008.
    [8] 张想柏, 杨秀敏, 陈肇元, 等. 接触爆炸钢筋混凝土板的震塌效应 [J]. 清华大学学报(自然科学版), 2006, 46(6): 765–768. DOI: 10.16511/j.cnki.qhdxxb.2006.06.004.

    ZHANG X B, YANG X M, CHEN Z Y, et al. Explosion spalling of reinforced concrete slabs with contact detonations [J]. Journal of Tsinghua University (Science and Technology), 2006, 46(6): 765–768. DOI: 10.16511/j.cnki.qhdxxb.2006.06.004.
    [9] WANG W, ZHANG D, LU F Y, et al. Experimental study and numerical simulation of the damage mode of a square reinforced concrete slab under close-in explosion [J]. Engineering Failure Analysis, 2013, 27: 41–51. DOI: 10.1016/j.engfailanal.2012.07.010.
    [10] 岳松林, 王明洋, 张宁, 等. 混凝土板在接触爆炸作用下的震塌和贯穿临界厚度计算方法 [J]. 爆炸与冲击, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.

    YUE S L, WANG M Y, ZHANG N, et al. A method for calculating critical spalling and perforating thicknesses of concrete slabs subjected to contact explosion [J]. Explosion and Shock Waves, 2016, 36(4): 472–482. DOI: 10.11883/1001-1455(2016)04-0472-11.
    [11] 方秦, 柳锦春, 张亚栋, 等. 爆炸荷载作用下钢筋混凝土梁破坏形态有限元分析 [J]. 工程力学, 2001, 18(2): 1–8. DOI: 10.3969/j.issn.1000-4750.2001.02.001.

    FANG Q, LIU J C, ZHANG Y D, et al. Finite element analysis of failure modes of blast-loaded R/C beams [J]. Engineering Mechanics, 2001, 18(2): 1–8. DOI: 10.3969/j.issn.1000-4750.2001.02.001.
    [12] 方秦, 吴平安. 爆炸荷载作用下影响RC梁破坏形态的主要因素分析 [J]. 计算力学学报, 2003, 20(1): 39–42; 48. DOI: 10.3969/j.issn.1007-4708.2003.01.009.

    FANG Q, WU P A. Main factors affecting failure modes of blast loaded RC beams [J]. Chinese Journal of Computational Mechanics, 2003, 20(1): 39–42; 48. DOI: 10.3969/j.issn.1007-4708.2003.01.009.
    [13] 柳锦春, 方秦, 龚自明, 等. 爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析 [J]. 爆炸与冲击, 2003, 23(1): 25–30.

    LIU J C, FANG Q, GONG Z M, et al. Analysis of dynamic responses and failure modes of R/C beams under blast loading [J]. Explosion and Shock Waves, 2003, 23(1): 25–30.
    [14] 崔满. 爆炸荷载作用下钢筋混凝土梁的试验研究 [D]. 上海: 同济大学, 2007: 24−47. DOI: 10.7666/d.y1811049.

    CUI M. Experimental research of reinforced concrete beam under the explosive load [D]. Shanghai, China: Tongji University, 2007: 24-47. DOI: 10.7666/d.y1811049.
    [15] 汪维, 刘瑞朝, 吴飚, 等. 爆炸荷载作用下钢筋混凝土梁毁伤判据研究 [J]. 兵工学报, 2016, 37(8): 1421–1429. DOI: 10.3969/j.issn.1000-1093.2016.08.012.

    WANG W, LIU R C, WU B, et al. Damage criteria of reinforced concrete beams under blast loading [J]. Acta Armamentarii, 2016, 37(8): 1421–1429. DOI: 10.3969/j.issn.1000-1093.2016.08.012.
    [16] 唐德高, 廖真, 薛宇龙, 等. 爆炸荷载下高强钢筋加强混凝土梁抗弯性能 [J]. 华中科技大学学报(自然科学版), 2017, 45(3): 122–126. DOI: 10.13245/j.hust.170322.

    TANG D G, LIAO Z, XUE Y L, et al. Research for flexural behavior of concrete beams with high-strength reinforcements under blast loading [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(3): 122–126. DOI: 10.13245/j.hust.170322.
    [17] WU C, OEHLERS D J, REBENTROST M, et al. Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs [J]. Engineering Structures, 2009, 31(9): 2060–2069. DOI: 10.1016/j.engstruct.2009.03.020.
    [18] 谢卫红, 董昊, 辛家宝. 碳纤维布加固钢筋混凝土梁的动力性能分析 [J]. 混凝土, 2009(7): 20–23. DOI: 10.3969/j.issn.1002-3550.2009.07.007.

    XIE W H, DONG H, XIN J B. Analysis of dynamic behavior of reinforced concrete beam with CFRPS [J]. Concrete, 2009(7): 20–23. DOI: 10.3969/j.issn.1002-3550.2009.07.007.
    [19] 曲艳东, 李鑫, 刘万里, 等. CFRP加固含初始裂纹的RC梁的抗爆性能研究 [J]. 玻璃钢/复合材料, 2016(8): 53-56; 26. DOI: 10.3969/j.issn.1003-0999.2016.08.009.

    QU Y D, LI X, LIU W L, et al. Numerical analysis of anti-explosion performances of RC beam with initial cracks strengthened with CFRP sheets [J]. Fiber Reinforced Plastics/Composites, 2016(8): 53-56; 26. DOI: 10.3969/j.issn.1003-0999.2016.08.009.
    [20] EBEAD U, SAEED H. Flexural and interfacial behavior of externally bonded/mechanically fastened fiber-reinforced polymer strengthened reinforced concrete beams [J]. ACI Structural Journal, 2014, 111(4): 741–751. DOI: 10.14359/51686628.
    [21] 刘三丰, 金丰年, 周寅智, 等. GFRP筋混凝土梁抗爆性能试验研究与数值分析 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024610. DOI: 10.1360/SSPMA-2019-0178.

    LIU S F, JIN F N, ZHOU Y Z, et al. Experimental study and numerical simulation of explosion resistance of GFRP reinforced concrete beams [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(2): 024610. DOI: 10.1360/SSPMA-2019-0178.
    [22] 巩玉发, 段劲松, 段圣允. 冲击荷载下型钢混凝土梁的动态响应及破坏模式仿真分析 [J]. 混凝土与水泥制品, 2018(3): 71–75. DOI: 10.19761/j.1000-4637.2018.03.017.

    GONG Y F, DUAN J S, DUAN S Y. Dynamic respond and finite element analysis of failure mode of steel reinforced concrete beams under impact loads [J]. China Concrete and Cement Products, 2018(3): 71–75. DOI: 10.19761/j.1000-4637.2018.03.017.
    [23] LI Y, ALGASSEM O, AOUDE H. Response of high-strength reinforced concrete beams under shock-tube induced blast loading [J]. Construction and Building Materials, 2018, 189: 420–437. DOI: 10.1016/j.conbuildmat.2018.09.005.
    [24] Dassault Systems Simulia Corporation. ABAQUS analysis user’s manual [M]. Providence, USA: Dassault Systems Simulia Corporation, 2016.
    [25] 中华人民共和国住房和城乡建设部组织. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国标准出版社, 2014.
    [26] 张飞, 马建勋, 南燕. 混凝土塑性损伤模型参数的选取与验证计算 [J]. 混凝土与水泥制品, 2021(11): 7–11, 29. DOI: 10.19761/j.1000-4637.2021.01.007.06.

    ZHANG F, MA J X, NAN Y. Parameters selection and verification calculation of concrete plastic damage model [J]. China Concrete and Cement Products, 2021(11): 7–11, 29. DOI: 10.19761/j.1000-4637.2021.01.007.06.
    [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 钢筋混凝土用余热处理钢筋: GB/T 13014—2013 [S]. 北京: 中国标准出版社, 2013.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  658
  • HTML全文浏览量:  241
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 修回日期:  2022-04-30
  • 网络出版日期:  2022-05-23
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回