一种基于材料细观特征量的PBX拉伸强度理论模型

李克武 胡秋实 郑贤旭 李涛 傅华 唐维

李克武, 胡秋实, 郑贤旭, 李涛, 傅华, 唐维. 一种基于材料细观特征量的PBX拉伸强度理论模型[J]. 爆炸与冲击, 2023, 43(1): 013106. doi: 10.11883/bzycj-2021-0514
引用本文: 李克武, 胡秋实, 郑贤旭, 李涛, 傅华, 唐维. 一种基于材料细观特征量的PBX拉伸强度理论模型[J]. 爆炸与冲击, 2023, 43(1): 013106. doi: 10.11883/bzycj-2021-0514
LI Kewu, HU Qiushi, ZHENG Xianxu, LI Tao, FU Hua, TANG Wei. A theoretical model of PBXs’ tensile strength based on meso-structure parameters[J]. Explosion And Shock Waves, 2023, 43(1): 013106. doi: 10.11883/bzycj-2021-0514
Citation: LI Kewu, HU Qiushi, ZHENG Xianxu, LI Tao, FU Hua, TANG Wei. A theoretical model of PBXs’ tensile strength based on meso-structure parameters[J]. Explosion And Shock Waves, 2023, 43(1): 013106. doi: 10.11883/bzycj-2021-0514

一种基于材料细观特征量的PBX拉伸强度理论模型

doi: 10.11883/bzycj-2021-0514
基金项目: 国家自然科学基金(11802288,11802283,11902306)
详细信息
    作者简介:

    李克武(1983- ),男,博士,助理研究员,kwli@mail.ustc.edu.cn

  • 中图分类号: O383

A theoretical model of PBXs’ tensile strength based on meso-structure parameters

  • 摘要: 为给塑性黏结炸药(PBX)的力学强度设计提供支撑、探索材料细观特征量与材料强度之间的定量规律,应用微裂纹扩展区理论,将PBX炸药的单轴拉伸过程中力学响应特征的变化归结为扩展裂纹取向角度的增加,将扩展裂纹最大取向角与拉伸强度相关联,构建了基于材料细观特征量的拉伸强度理论模型,并采用不同温度的单轴拉伸实验验证了该理论模型的有效性。研究表明:该拉伸强度理论模型可以实现对PBX炸药拉伸强度与炸药微裂纹密度、颗粒/黏结剂界面性能以及颗粒/黏结剂体系的表观杨氏模量、泊松比等细观特征量之间关系的定量描述。
  • 图  1  微裂纹的整体坐标系与局部坐标系[8]

    Figure  1.  Globe coordinate and local coordinate of micro-crack[8]

    图  2  相邻裂纹的连接

    Figure  2.  Connecting of neighboring cracks

    图  3  拟合结果

    Figure  3.  Fitting results

    图  4  理论模型预测与实验结果对比

    Figure  4.  Comparison of model prediction and experimental value

    图  5  两种应力强度因子(KⅠCKⅡC)对材料强度的影响

    Figure  5.  Curves of tensile strength with two stress intensity factors (KⅠC and KC)

    表  1  与温度无关的PBX-3细观特征量

    Table  1.   Temperature independent mesoscopic characteristics of PBX-3

    n/cm−3a0/cmau/cmv
    13720.0063520.037030.3
    下载: 导出CSV

    表  2  与温度相关的PBX-3细观特征量

    Table  2.   Temperature dependent mesoscopic characteristics of PBX-3

    T/℃KⅠC/(MPa·cm1/2KⅡC/(MPa·cm1/2
    −400.16280.1911
    −300.15020.1763
    −250.15560.1827
    −200.15200.1784
    −100.14570.1711
    250.14570.1711
    450.13220.1552
    下载: 导出CSV
  • [1] STEVENS R. A strength model and service envelope for PBX 9501: LA-UR-14-20696 [R]. Los Alamos: Los Alamos National Laboratory, 2014.
    [2] 肖磊, 刘杰, 郝嘎子, 等. 微纳米RDX颗粒级配对压装PBX性能影响 [J]. 含能材料, 2016, 24(12): 1193–1197. DOI: 10.11943/j.issn.1006-9941.2016.12.011.

    XIAO L, LIU J, HAO G Z, et al. Effects of nano-/micrometer RDX particle gradation on the property of PBX [J]. Chinese Journal of Energetic Materials, 2016, 24(12): 1193–1197. DOI: 10.11943/j.issn.1006-9941.2016.12.011.
    [3] 黄辉. 颗粒级配技术及其在含能材料中的应用 [J]. 含能材料, 2001, 9(4): 161–164. DOI: 10.3969/j.issn.1006-9941.2001.04.005.

    HUANG H. Particle grade technique and application on energetic materials [J]. Energetic Materials, 2001, 9(4): 161–164. DOI: 10.3969/j.issn.1006-9941.2001.04.005.
    [4] LV K Z, YANG K, ZHOU B, et al. The densification and mechanical behaviors of large-diameter polymer-bonded explosives processed by ultrasonic-assisted powder compaction [J]. Materials & Design, 2021, 207: 109872. DOI: 10.1016/j.matdes.2021.109872.
    [5] 黄辉, 王晓川. 偶联剂在HMX基浇注固化炸药中的作用 [J]. 含能材料, 2000, 8(1): 13–17. DOI: 10.3969/j.issn.1006-9941.2000.01.004.

    HUANG H, WANG X C. Behavior of coupling agent in HMX-based extrudable cast explosive [J]. Energetic Materials, 2000, 8(1): 13–17. DOI: 10.3969/j.issn.1006-9941.2000.01.004.
    [6] LI F, YE L, NIE F D, et al. Synthesis of boron-containing coupling agents and its effect on the interfacial bonding of fluoropolymer/TATB composite [J]. Journal of Applied Polymer Science, 2007, 105(2): 777–782. DOI: 10.1002/app.26117.
    [7] YANG X L, GONG F Y, ZHANG K, et al. Enhanced creep resistance and mechanical properties for CL-20 and FOX-7 based PBXs by crystal surface modification [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(4): 572–578. DOI: 10.1002/prep.202000277.
    [8] 冯西桥, 余寿文. 准脆性材料细观损伤力学 [M]. 北京: 高等教育出版社, 2002: 20–41.

    FENG X Q, YU S W. Damage micromechanics of quasi-brittle materials [M]. Beijing: Higher Education Press, 2002: 20–41.
    [9] YANG Y Z, LI J L, CHEN J K. Experimental and numerical analysis of shear process of a high particle content bonding material [J]. Journal of Applied Mechanics, 2021, 88(6): 061003. DOI: 10.1115/1.4050277.
    [10] LIU C, THOMPSON D G. Crack initiation and growth in PBX 9502 high explosive subject to compression [J]. Journal of Applied Mechanics, 2014, 81(10): 101004. DOI: 10.1115/1.4028087.
    [11] LIU M, HUANG X C, WU Y Q, et al. Numerical simulations of the damage evolution for plastic-bonded explosives subjected to complex stress states [J]. Mechanics of Materials, 2019, 139: 103179. DOI: 10.1016/j.mechmat.2019.103179.
    [12] CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253–388. DOI: 10.1016/0370-1573(87)90049-4.
    [13] BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2303–2322. DOI: 10.1016/s0022-5096(98)00011-8.
    [14] ZUO Q H, ADDESSIO F L, DIENES J K, et al. A rate-dependent damage model for brittle materials based on the dominant crack [J]. International Journal of Solids and Structures, 2006, 43(11/12): 3350–3380. DOI: 10.1016/j.ijsolstr.2005.06.083.
    [15] RAGASWAMY P, LEWIS M W, LIU C, et al. Modeling the mechanical response of PBX 9501: LA-UR-10-01416 [R]. Los Alamos: Los Alamos National Laboratory, 2010.
    [16] PIJAUDIER-CABOT G, BAŽANT Z P. Nonlocal damage theory [J]. Journal of Engineering Mechanics, 1987, 113(10): 1512–1533. DOI: 10.1061/(asce)0733-9399(1987)113:10(1512.
    [17] LIU C. Damage and fracture in high explosive materials: LA-UR-11-05618 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
    [18] ZHANG S L, YANG W. Macrocrack extension by connecting statistically distributed microcracks [J]. International Journal of Fracture, 1998, 90(4): 341–353. DOI: 10.1023/A:1007440012284.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  109
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-09-25
  • 网络出版日期:  2022-12-17
  • 刊出日期:  2023-01-05

目录

    /

    返回文章
    返回